Imagerie des champs de déformations dans les semi-conducteurs: du matériau au dispositif
Ce sujet traite de la visualisation et de la quantification des champs de déformation dans les matériaux semi-conducteurs, par des techniques utilisant le rayonnement synchrotron. Le contrôle de la déformation est fondamental pour optimiser les propriétés de transport électronique, mécaniques et thermiques. Dans une approche duale, nous combinerons la détermination du tenseur local de déformation déviatorique en balayant l'échantillon sous un nano faisceau polychromatique (µLaue) et une imagerie d'un champ de vu donné (microscopie aux rayons X en champ sombre, DFXM).
Des recherches originales s’intéresseront à améliorer l’analyse : (1) de la précision et de la vitesse de détermination quantitative des champs de déformation, (2) des distributions des gradients de déformation, et (3) du champ de déformation dynamique dans les matériaux piézoélectriques par des mesures stroboscopiques. Pour illustrer ces points, trois cas scientifiques correspondant à des matériaux microélectroniques pertinents et de complexité croissante seront étudiés :
1.Champs de déformation statiques entourant des contacts métalliques dans le Si, tels que les vias à travers le silicium (TSV) à haute densité dans la technologie CMOS.
2.Gradients de déformation dans des structures hétéroépitaxiales complexes Ge/GeSn avec des variations de composition le long de la direction de croissance.
3.Études de déformation dynamique de résonateurs acoustiques LiNbO3 en volume avec une fréquence de résonance dans la plage des MHz.
La validation de cette approche conceptuelle permettra une avancée significative dans le domaine de la microélectronique et l'ingénierie de déformation.
Modèle d’organoïdes cérébraux complexes reproduisant la niche tumorale du glioblastome et sa composante immunitaire pour le développement d’une médecine personnalisée
Le glioblastome, responsable de 3 500 décès annuels en France, est une tumeur cérébrale extrêmement agressive et résistante aux traitements actuels. Les essais cliniques d’immunothérapie n’ont montré que des effets transitoires, soulignant l'importance de comprendre les mécanismes de résistance et de développer des stratégies thérapeutiques mieux ciblées.
Nous avons développé un modèle innovant d’invasion de cellules souches de gliome dans des organoïdes cérébraux immunocompétents et vascularisés, dérivés de cellules souches pluripotentes induites (iPSC) (Raguin et coll. Soumis). Ce modèle reproduit fidèlement la niche tumorale du glioblastome, incluant la cooptation vasculaire, la reprogrammation de la microglie en macrophages associés aux tumeurs et la récurrence tumorale après radiothérapie.
L’objectif de ce projet de thèse est de dériver un modèle d’organoïdes cérébraux universel pour le transfert aux cellules de gliomes issues de patients et des lymphocytes afin d’optimiser l’approche d’immunothérapie (cellules CAR-T).
Il s’agira de créer un modèle universel d’organoïdes cérébraux humains immunitairement "silencieux" en supprimant l’expression du système HLA classes I/II dans les iPSC (CRISPR/CAS9 pour les gènes ß2M et CIITA). Par ailleurs, il s’agira d’élucider les mécanismes d’immunosuppression induits par l’irradiation, tels que la reprogrammation des cellules microgliales/macrophages et l’implication de la sénescence. Différentes approches visant à rendre le microenvironnement tumoral plus propice à l’immunothérapie seront explorées, comme en activant la voie de l'interféron de type I par modification génétique ou via des agonistes de la voie cGAS/STING. Par la suite, l'utilisation de cellules CAR-T ciblant un antigène surexprimé par les cellules de glioblastome (CD276/B7-H3) sera étudiée. Ce modèle pourra être utilisé en médecine personnalisée, en co-cultivant les cellules tumorales, les monocytes et les cellules CAR-T des patients.
Ce projet offre des perspectives innovantes pour le traitement personnalisé du glioblastome via l'immunothérapie et pourrait représenter une avancée majeure dans cette approche thérapeutique.
Valorisation du biogaz par conversion du CO2 avec une biorafinerie avancée
L'utilisation de sources d'énergie renouvelables est un défi majeur pour les décennies à venir. L'une des façons de répondre à la demande croissante d'énergie est de valoriser les déchets. Parmi les différentes stratégies actuellement développées, la valorisation de biogaz issu des stations de méthanisation apparaît comme une approche prometteuse. En effet, le biogaz est composé majoritairement de méthane, mais aussi de CO2 (environ 40%) non utilisé. Le projet proposé ici est le reformage du biogaz en utilisant une source de biohydrogène renouvelable pour convertir le CO2 restant en CH4 pur. Nous proposons de mettre en place une bioraffinerie avancée autonome qui combinera la photoproduction d'hydrogène à partir de déchets de l'industrie laitière réalisée par la bactérie Rhodobacter capsulatus combiné avec le CO2 présent dans le biogaz dans une unité de biométhanation contenant une culture de Methanococcus maripaludis, une archée méthanogène capable de produire du CH4 à partir de CO2 et de H2 selon la réaction de Sabatier. Le but est de produire du méthane de façon non énergivore et respectueuse de l'environnement.
Suivi par imagerie in vivo multiplexée de la dissémination du pathogène et de la dynamique des réponses immunitaires dans un modèle de tuberculose
Cette thèse a pour objectif de mettre en place un suivi multiparamétrique par imagerie médicale à la fois de la colonisation d’un pathogène donné suite à une infection mais également de la dynamique des réponses immunitaires associées à cette infection, le tout à l’échelle de l’organisme entier. Cela pourrait fournir un outil innovant et non invasif permettant de mieux comprendre les liens entre la dynamique dans le temps et dans l’espace des réponses immunitaires et la bio-distribution du pathogène dans l’organisme, et potentiellement fournir de nouveaux biomarqueurs associés à différentes maladies.
Pour ce faire, cette thèse s’appuierait sur la pathologie de la tuberculose qui représente un enjeu majeur de santé publique à ce jour dans le monde. L'objectif principal est de déterminer la relation entre la dissémination de Mycobacterium tuberculosis et les réponses immunitaires associées à travers tout le corps au cours de l'infection tuberculeuse, de l'infection précoce à la tuberculose latente ou active, grâce à des protocoles d'imagerie multiplexée innovants. Le but de cette étude est de fournir des corrélations dans le temps et dans l'espace entre la charge bactérienne locale et plusieurs infiltrations de cellules immunitaires (macrophages activés et sous-ensembles de lymphocytes T) survenant après l'infection et détectées au fil du temps par imagerie. Ces résultats pourraient alors fournir, avec une invasivité minimale, des biomarqueurs prédictifs de la progression de la maladie et pourraient également offrir des informations précieuses sur les cibles immunitaires potentielles pour de futures stratégies préventives ou curatives basées sur la modulation du système immunitaire. Pour ce faire, cette thèse tirerait parti du modèle préclinique de tuberculose chez le primate non humain développé en France et de notre expertise en imagerie in vivo des pathogènes et des cellules immunitaires dans ce modèle. Il est à noter que la caractérisation plus approfondie des cellules immunitaires dans les échantillons d'intérêt (guidés par imagerie) sera évalué par des technologies de transcriptomique spatiale ou unicellulaire sur des échantillons de tissus, afin de fournir des informations supplémentaires sur la physiopathologie de la tuberculose et l'efficacité des traitements potentiels.
Développement d’une plateforme microfluidique bioanalytique pour quantifier la bio distribution cellulaire d’un médicament
Le mode d'action d’un médicament, ainsi que son efficacité, sont corrélés non seulement à sa capacité à s’accumuler au niveau des tissus pathologiques ciblés, à savoir sa bio distribution tissulaire, mais également à atteindre spécifiquement sa cible moléculaire au sein des cellules. Une accumulation non spécifique d’un médicament dans ces cellules peut être à l’origine d’effets non-désirés, par exemple des effets secondaires lors de chimiothérapies. En d’autres termes, évaluer l’efficacité, la spécificité et l’absence de toxicité d’un médicament nécessite de déterminer précisément et de façon quantitative sa bio distribution cellulaire. Devenus incontournable en oncologie, les conjugués anticorps-médicaments (ADC) permettent une thérapie vectorisée afin de cibler préférentiellement au sein d’une tumeur un sous-ensemble de cellules tumorales exprimant l’antigène reconnu par l’anticorps.
Ces ADC ciblent des cellules tumorales spécifiques exprimant un antigène particulier, limitant ainsi la toxicité pour les tissus sains. Le marquage radioactif des médicaments (3H, 14C) est une méthode clé pour quantifier leur accumulation dans les cellules tumorales et non tumorales, afin d’évaluer la précision du ciblage et éviter les effets secondaires indésirables. Cependant, la détection des faibles émissions de tritium nécessite de nouvelles solutions technologiques. Le projet propose le développement d'une plateforme microfluidique innovante permettant de détecter et quantifier ces isotopes dans des cellules uniques. Cette approche permettra de mieux documenter la distribution des ADC dans des tissus hétérogènes et d’affiner les stratégies thérapeutiques.
Assemblage de la Nitrogénase: Qu'est ce qui distingue une nitrogénase d'une protéine échafaudage
Face aux crises du changement climatique et de la dégradation des sols, il est urgent de trouver des solutions pour réduire les émissions de gaz à effet de serre et la dépendance aux engrais azotés, tout en garantissant des rendements agricoles suffisants pour nourrir une population mondiale croissante. Une solution naturelle réside dans l'utilisation de la nitrogénase, une enzyme bactérienne capable de fixer l’azote atmosphérique en ammoniac, une forme directement assimilable par les plantes. Cependant, la biosynthèse de son cofacteur métallique, le FeMo-co, est un processus complexe nécessitant l’action coordonnée de nombreuses protéines.
L'objectif de cette thèse est de simplifier ce processus en étudiant des systèmes de maturation de la nitrogénase trouvés dans certains organismes, où un nombre réduit de protéines est utilisé, notamment grâce à la combinaison de plusieurs fonctions en une seule. Par une étude structurale et fonctionnelle comparative, nous chercherons à comprendre le rôle précis de chaque élément et comment simplifier ce système tout en conservant une activité optimale. Une telle avancée permettrait d’intégrer la capacité de fixation de l’azote dans les céréales, réduisant ainsi la dépendance aux engrais azotés.
Ce projet est issu d’une collaboration entre des équipes du CEA à l’Institut de Biologie Structurale et du CSIC à Madrid, reconnues pour leur expertise dans l'étude structurale des métalloprotéines ainsi que la biochimie et la génétique de la machinerie d’assemblage de la nitrogénase. Le doctorant bénéficiera d’un environnement scientifique de pointe, propice à une formation complète et enrichissante, pour une carrière future en recherche académique ou en R&D.
Geometrie de la toile cosmique: du modele théorique aux observations
L'étude des filaments de la toile cosmique est un aspect primordial de la recherche moderne en cosmologie. Avec l'avènement des grands relevés cosmologiques extrêmement vastes et précis, notamment la mission spatiale Euclid, il devient possible d'étudier en détail la formation des structures cosmiques via l'instabilité gravitationnelle. En particulier, les aspects non linéaires de cette dynamique peuvent être étudiés d'un point de vue théorique avec l'espoir de détecter des signatures dans les observations. L'une des principales difficultés à cet égard est probablement de faire le lien entre la distribution observée des galaxies le long des filaments et la distribution de matière sous-jacente pour laquelle des modèles à partir de premiers principes sont connus. En s'appuyant sur des développements théoriques récents en théorie des perturbations gravitationnelles et en théorie des champs aléatoires contraints, le candidat retenu développera des prédictions pour des observables statistiques (comptages d'extrema, estimateurs topologiques, fonctions de corrélation d'extrema, voir e.g Pogosyan et al. 2009, MNRAS 396 ou Ayçoberry, Barthelemy, Codis 2024, A&A 686) de la toile cosmique, appliqués au champ discret de galaxies qui ne trace la matière totale que de manière biaisée. Ce modèle sera ensuite appliqué à l'analyse des données d'Euclid.
Mesures de rendement de fission pour l'évaluation de la chaleur de désintégration du combustible nucléaire usé.
La réaction de fission est un processus violent au cours duquel un noyau lourd est divisé en deux composants, les fragments de fission. La distribution des fragments de fission produits est très large ; plus de 300 isotopes radioactifs différents peuvent être produits lors de la fission et leur désintégration radioactive est une question importante pour la manipulation et le stockage sûr du combustible nucléaire usé.
Le dispositif expérimental disponible au GANIL permet une identification précise et complète des fragments de fission, avant leur désintégration radioactive.
Une campagne expérimentale a été menée au VAMOS en 2024 pour étudier la fission de différents actinides produits dans des réactions de transfert de plusieurs nucléons, sur la base de la technique de cinématique inverse.
Les données obtenues constituent une référence importante pour les modèles nucléaires et les codes de simulation de la chaleur dégagée lors de la désintégration du combustible nucléaire usagé.
Ces données innovantes contr
Leçons conceptuelles de la causalité indéterminée
Récemment, il a été reconnu que les structures causales en mécanique quantique permettent de concevoir une nouvelle ressource non classique, connue sous le nom de causalité indéterminée, qui ouvre de nouvelles perspectives en information quantique. Malgré des avancées théoriques significatives et quelques réalisations expérimentales, les implications conceptuelles de la causalité indéterminée restent mal comprises. Dans le même temps, la causalité quantique est devenu un élément fondamental du formalisme mathématique afin d’élucider les divergences entre les approches opérationnelles et spatiotemporelles en physique. Elle a déjà facilité une compréhension améliorée de concepts fondamentaux tels que les événements (Vilasini et Renner, Phys. Rev. Lett. 133, 080201), les faits (Brukner, Nature Phys. 16, 1172–1174, 2020), les entrées/sorties (Chiribella et Liu, Comm. Phys. 5, 190, 2022), les systèmes (Grinbaum, Stud. Hist. Phil. Mod. Phys. 58, 22-30, 2017) et le calcul (Araujo et al., Phys. Rev. A 96, 052315, 2017).
Dans cette thèse, le candidat développera une compréhension systématique des leçons conceptuelles de la causalité indéterminée au sein des cadres classiques, quantiques et des théories probabilistes généralisées (GPT). Il examinera la signification fondamentale des configurations bipartites et multipartites, y compris leurs capacités spatio-temporelles et computationnelles. Pour réaliser des progrès significatifs dans le domaine des fondements de la théorie quantique, le candidat cherchera à appliquer la causalité indéterminée pour approfondir notre compréhension de la théorie quantique standard et de ses interprétations.
Les questions de recherche spécifiques incluent :
• Établir des bases conceptuelles pour l'identification des systèmes et des événements à travers le temps, en particulier en relation avec les ordres causaux indéfinis et les scénarios de « l'ami de Wigner ».
• Placer cette discussion fondamentale émergente dans un cadre philosophique et métaphysique plus large.
• Aborder la notion d'agent/observateur en tant qu'entité théorique plutôt que métathéorique.
Des publications sont attendues dans des revues de physique (PRL, PRA, NJP, Quantum) et/ou dans des revues de philosophie de la physique (Philosophy of Physics, BJPS, Found. Phys., SHPMP). Des collaborations sont prévues avec des groupes en France, en Autriche, en Belgique et au Canada.
Génération d’harmoniques d’ordre élevé en cavité comme source quantique attoseconde
La physique attoseconde est à la pointe de la spectroscopie résolue en temps. En effet, elle exploite la sonde d’impulsion lumineuse la plus courte qui puisse être produite expérimentalement, grâce au processus de génération d’harmoniques d’ordre élevé (HHG). Une méthode standard pour déclencher le processus HHG consiste à soumettre un système atomique à un champ électromagnétique oscillant dont la force est comparable au potentiel de Coulomb liant les électrons au noyau. Cet effet optique non linéaire et nonperturbatif produit un rayonnement cohérent avec un spectre très large dans la gamme de fréquences de l’extrême ultraviolet (XUV), qui forme des impulsions attosecondes (1e-18 s). Depuis sa découverte à la fin des années 1980, des efforts expérimentaux et théoriques continus ont été consacrés à la compréhension complète de ce phénomène complexe. Malgré l’immense succès de la science attoseconde, il n’y a toujours pas de consensus sur une description quantique du processus. Nous pensons qu’une telle description de la HHG ferait progresser notre compréhension de l’optique non linéaire et ouvrirait de nouvelles perspectives pour la science attoseconde.