Stratégie pharmacologique innovante pour lutter contre les toxines du risque biologique

OBJECTIF DE THESE. Développer des molécules PROTAC pour dégrader par le protéasome des toxines internalisées dans les cellules hôtes, et proposer en fin de thèse des candidats médicaments pour des études in vivo.

ETAT DE L'ART ET PROBLEMATIQUE. Les toxines de plante et bactériennes comptent parmi les substances naturelles les plus toxiques et sont à l'origine de maladies mortelles, comme par exemple le botulisme et le tétanos. Une fois la toxine internalisée dans les cellules cibles, l'immunothérapie est inefficace, et il n'existe pas de traitements curatifs contre ces biomolécules. Un moyen de réaliser une avancée majeure dans le développement de contre-mesures médicales serait de cibler la toxine directement dans le cytoplasme des cellules hôtes à l'aide de molécules PROTAC. Les PROTAC sont des dégradateurs hétérobifonctionnels qui éliminent spécifiquement les protéines ciblées en détournant le système ubiquitine-protéasome de la cellule. Cette stratégie thérapeutique récente représente une technologie attrayante pour la découverte de nouveaux médicaments.

METHODOLOGIE. Pour mener à bien ce projet, l'étudiant(e) en thèse réalisera des campagnes de criblages in silico pour identifier des ligands d'une toxine et en améliorer l'affinité. Les expériences de validation des touches nécessiteront la production par voie recombinante d'un fragment de toxine et sera réalisée chez E. coli. A partir des ligands optimisés les plus prometteurs, des bibliothèques ciblées de molécules PROTAC dirigées contre la toxine seront synthétisées en collaboration avec une équipe de chimiste. L'étudiant(e) évaluera la capacité de ces molécules à interagir et éliminer la toxine internalisée dans les cellules en culture par différentes approches, afin de proposer en fin de thèse des candidats médicaments pour des études in vivo.

Optimisation de la microscopie super-résolution à température cryogénique pour la biologie structurale intégrée

La microscopie de fluorescence à super-résolution (« nanoscopie ») permet d’imager le vivant à l'échelle nanométrique. Cette technique a déjà révolutionné la biologie cellulaire, et aujourd'hui, elle investit le domaine de la biologie structurale. Une évolution majeure concerne le développement de la nanoscopie à température cryogénique (« cryo-nanoscopie »). La cryo-nanoscopie offre plusieurs avantages clés, notamment la perspective d'une corrélation extrêmement précise avec les données de cryo-tomographie électronique (cryo-ET). Cependant, la cryo-nanoscopie ne permet pas encore d’obtenir des images super-résolues de qualité suffisamment élevée. Ce projet de thèse se concentrera sur l'optimisation de la cryo-nanoscopie en utilisant la méthode de microscopie de localisation de molécules uniques (SMLM) avec des protéines fluorescentes (FP) comme marqueurs. Notre objectif est d'améliorer significativement la qualité des images cryo-SMLM (i) en étudiant les propriétés photophysiques de plusieurs FPs à température cryogénique, (ii) en modifiant un microscope cryo-SMLM pour collecter de meilleures données et (iii) en développant le complexe du pore nucléaire (NPC) comme outil de métrologie pour évaluer quantitativement les performances de la cryo-SMLM. Ces développements favoriseront les études corrélatives (cryo-CLEM) reliant la cryo-nanoscopie et la tomographie électronique basée sur le cryo-FIB-SEM.

Reconstitution in vitro de la polarisation du réseau de microtubules.

Les microtubules, polymères biologiques présents dans toutes les cellules eucaryotes, servent de support au transport intracellulaire via des moteurs moléculaires, définissant ainsi la polarité cellulaire. Contrairement au dogme établissant le centrosome comme déterminant de cette polarité, des recherches du CytoMorpho Lab révèlent que les microtubules peuvent s'auto-organiser sans centre organisateur. Des expériences in vitro ont démontré que les microtubules séparent activement les moteurs moléculaires de polarités opposées en domaines distincts, créant un nouveau mécanisme de séparation de phase active. Un tel partitionnement de l’espace par les microtubules et les moteurs constitue un nouveau mécanisme de morphogenèse.Le projet doctoral vise à encapsuler ce système dans des vésicules lipidiques de taille contrôlée pour étudier comment les dimensions relatives permettent une polarisation efficace. Cette approche nécessitera le développement d'un dispositif microfluidique et l'optimisation des conditions biochimiques pour l'ancrage des moteurs dans la bicouche lipidique. Les perspectives incluent la création de "cellules artificielles" capables de polarisation et la réévaluation des modèles de polarisation cellulaire, notamment pour les lymphocytes T et d'autres cellules différenciées.

Qubits volants dans le graphène

Les systèmes à l'état solide, actuellement envisagés pour le calcul quantique, sont construits à partir de systèmes localisés à deux niveaux, dont des exemples emblématiques sont les qubits supraconducteurs ou les points quantiques semi-conducteurs. Étant donné qu'ils sont localisés, ils nécessitent une quantité fixe de matériel par qubit.

Les qubits propagateurs ou "volants" présentent des avantages distincts par rapport aux qubits localisés : l'empreinte matérielle dépend uniquement des portes et des qubits eux-mêmes (photons), qui peuvent être créés à la demande, rendant ces systèmes facilement évolutifs. Un qubit qui combinerait les avantages des systèmes localisés et des qubits volants offrirait un changement de paradigme dans la technologie quantique. À long terme, la disponibilité de ces objets ouvrirait la possibilité de construire un ordinateur quantique universel combinant une petite empreinte matérielle fixe et un nombre arbitrairement grand de qubits avec des interactions à longue portée. Une approche prometteuse dans ce sens consiste à utiliser des électrons plutôt que des photons pour réaliser de tels qubits volants. L'avantage des excitations électroniques réside dans l'interaction de Coulomb, qui permet la mise en œuvre d'une porte à deux qubits.

L'objectif de ce doctorat sera le développement de la première plateforme nanoélectronique quantique pour la création, la manipulation et la détection d'électrons volants sur des échelles de temps allant jusqu'à la picoseconde, afin de les exploiter pour des technologies quantiques.

Mesure de la décohérence et de l’intrication quantique dans la photoémission attoseconde

Le projet de thèse est axé sur l'étude avancée de la dynamique de photoémission attoseconde. L'objectif est d'accéder en temps réel aux processus de décohérence induits, par exemple, par l'intrication quantique électron-ion. Pour ce faire, l’étudiant-e développera des techniques de spectroscopie attoseconde utilisant un nouveau laser Ytterbium à taux de répétition élevé.

Sujet détaillé :
Ces dernières années, des progrès spectaculaires ont été réalisés dans la génération d'impulsions attosecondes (1 as=10-18 s), récompensés par le prix Nobel 2023 [1]. Ces impulsions ultracourtes sont générées à partir de la forte interaction non linéaire entre des impulsions laser brèves et intenses et des jets de gaz [2]. Elles ont ouvert de nouvelles perspectives pour l'exploration de la matière à l'échelle de temps intrinsèque de l'électron : la spectroscopie attoseconde permet d'étudier en temps réel le processus quantique de photoémission et de filmer en 3D l'éjection du paquet d'ondes électronique [3, 4]. Cependant, ces études se sont limitées à des dynamiques pleinement cohérentes par manque d'outils expérimentaux et théoriques pour traiter la décohérence et l'intrication quantique. Récemment, deux techniques ont été proposées pour réaliser une tomographie quantique du photoélectron dans son état asymptotique final [5, 6].

L'objectif de ce projet de thèse est de développer la spectroscopie attoseconde afin d'accéder à l'évolution en temps réel de la décohérence et de l'intrication au cours de la photoémission. Les techniques tomographiques seront mises en œuvre sur la plateforme laser ATTOLab à l'aide d'une nouvelle source laser Ytterbium. Cette nouvelle technologie laser émergente offre une stabilité cinq fois supérieure et un taux de répétition dix fois supérieur à celui de la technologie actuelle Titane-Saphir. Ces nouvelles capacités représentent une avancée majeure dans le domaine et permettent, par exemple, d'utiliser des techniques de coïncidence de particules chargées pour étudier la dynamique de la photoémission et de l'intrication quantique avec une précision sans précédent.

Ce projet de thèse s'inscrit dans le cadre du réseau européen QU-ATTO (https://quatto.eu/), récemment financé, qui ouvre de nombreuses perspectives de collaboration avec des laboratoires européens. Des collaborations étroites sont notamment déjà en cours avec les groupes des Profs. Anne L’Huillier à Lund et Giuseppe Sansone à Fribourg. En raison de la règle de mobilité, les candidats ne doivent pas avoir résidé (travail, études) en France plus de 12 mois depuis août 2022.
L'étudiant recevra une solide formation en optique ultrarapide, physique atomique et moléculaire, science attoseconde, optique quantique, et acquerra une large maîtrise des techniques de spectroscopie XUV et de particules chargées.

Références :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)
[6] H. Laurell, et al., Nature Photonics, https://doi.org/10.1038/s41566-024-01607-8 (2025)

Développement et étude d'un matériau composite laminé intégrant des nanoTubes de carbone pour application en réservoirs cryogéniques

L'utilisation de matériaux composites dans le domaine spatial a conduit à de grandes améliorations de poids. Pour continuer à réaliser un gain de poids significatif, le réservoir cryogénique composite est la prochaine application technologique à atteindre en remplaçant les réservoirs d'ergols cryogéniques en alliage métallique actuels. Les matériaux composites à matrice organique renforcée plus légers (au moins aussi performants d'un point de vue mécanique, thermique, chimique et de résistance à l'inflammation) sont une cible réaliste à atteindre qui a été explorée ces dernières années. De nombreuses approches de recherche tendent à répondre à ce verrou technologique, mais les potentialités des nanotubes de carbone (NTC) en termes de propriétés mécaniques et physiques, doivent être explorées plus en profondeur.

Une première phase d'évaluation de l'intérêt des NTC pour les applications spatiales (collaboration CNES/CEA/I2M/CMP Composite) a été menée afin d'associer des NTC à une matrice cyanate-ester dans des matériaux composites stratifié suivant trois procédés et protocoles de développement de composites stratifiés : (i) le transfert de mats de NTC alignés par pressage à chaud, (ii) la dispersion de NTC enchevêtrés mélangés à de la résine, ou (iii) la croissance de nanotubes alignés directement sur le pli sec. Connaissant les sollicitations mécaniques et thermiques, l'objectif est de démontrer l'efficacité des NTC et l'influence de leurs caractéristiques sur la tolérance aux dommages du matériau apportée par la fonctionnalisation des NTC et consiste à retarder le processus de fissuration du composite à proximité de la couche de NTC et ainsi à bloquer la percolation du réseau de fissuration qui conduit à la perte d'étanchéité. Pour le procédé de développement privilégié identifié, l'objectif de ce travail doctoral est désormais de consolider la fonctionnalisation du matériau par des NTC (forme, densité, etc.) et la compréhension du comportement mécanique (à température ambiante et à basse température) pour le développement du matériau feuilleté intégrant des NTC.
Connaissant l'application finale potentielle comme réservoir cryogénique ou pour l'amélioration de la durabilité des matériaux structuraux dans une double application, des essais pertinents seront réalisés pour démontrer l'impact en termes de développement de dommages et d'étanchéité par rapport au même matériau sans NTC.

Alternatives aux perfluorés pour les traitements d’hydrofugation et oléofugation des textiles utilisés pour la protection corporelle individuelle NRBC

Trouver des alternatives aux composés fluorés (PFAS) concerne des domaines d'application très différents. Parmi eux
le traitement de textiles techniques pour les rendre hydrofuges et oléofuges est un enjeu majeur pour fabriquer
des tenues de protection aux contaminants tant aqueux que huileux. Notre laboratoire développe de telles alternatives en greffant
de manière covalente des molécules sur des fibres sélectionnées parmi celles déjà utilisées pour les textiles techniques. la thèse sera axée autour d'un travail expérimental composé de deux volets. Le premier volet consistera à améliorer et qualifier
au niveau semi-industriel les propriétés hydrofuges et oléofuges déjà obtenues et qualifiées selon les normes en vigueur (glissement de gouttes d'eau et d'huile,
imprégnation lente de gouttes d'huiles) grâce à nos revêtements chimiques nanométriques. Le second volet sera dédié à optimiser la structure du tissage, en relation avec le traitement chimique, pour déterminer le tissage optimal en fonction
des propriétés voulues. Le travail sera effectué en contact étroit avec un industriel du textile technique et avec l'ENSAIT de Roubaix.

Etude des propriétés thermomécaniques des écoulements d'hydrogène solide

Le Département des Systèmes Basses Températures (DSBT) de l’IRIG développe plusieurs thématiques de recherche autour de l’hydrogène solide cryogéniques et ses isotopes. Les applications de cette recherche vont de la production de cibles d’hydrogène solide micrométriques renouvelables pour la génération de protons de forte énergie pour l'accélération laser-plasma, à la formation et l’injection de glaçons d’hydrogène de taille millimétrique ou centimétrique pour l’alimentation et le contrôle du plasma dans les réacteurs de fusion par confinement magnétique ou inertiel. Une problématique transverse à ces applications réside dans la connaissance fine des propriétés mécaniques de l'hydrogène solide, que cela soit pour mieux comprendre la physique d’extrusion et de production des cibles ou celle de la formation et de l’accélération des glaçons pour leur injection dans les plasmas de fusion.
Le sujet de cette thèse se focalise sur l’étude de l’extrusion de l’hydrogène solide sous pression. Sur cette technologie, le DSBT développe depuis plus de 10 ans plusieurs cryostats permettant la production de ruban d’hydrogène solide, dont la taille varie de quelques millimètres à quelques dizaines de micromètres, extrudés à des vitesses de quelques millimètres par seconde.
L’axe principal de recherche est une meilleure compréhension des mécanismes d’extrusion pour permettre le développement d’outils prédictifs numériques de conception de système d’extrusion. Cette thèse expérimentale reposera sur de la rhéométrie cryogénique basée sur un rhéomètre capillaire et/ou une expérience de couette développée au cours d’une précédente thèse. Cette étude se fera en collaboration avec le Laboratoire de Rhéologie et Procédés du l’Université Grenoble Alpes.

ÉTUDE DE L'HÉTÉROGÉNÉITÉ CONFORMATIONNELLE ET DE LA DYNAMIQUE DES MARQUEURS FLUORESCENTS DE TYPE FAST

Les protéines fluorescentes, et en particulier les protéines fluorescentes réversiblement commutables (RSFPs), ont révolutionné l’imagerie par fluorescence avancée, ouvrant la voie à des applications comme la microscopie à super-résolution. Parmi les alternatives émergentes, les rapporteurs basés sur des fluorogènes, tels que les systèmes FAST (Fluorescence Activating and Absorption Shifting Tag) se distinguent par leur grande photostabilité et leur polyvalence. FAST fonctionne par liaison non covalente d’une petite protéine modifiée à un fluorogène organique, ce qui induit la fluorescence et permet un suivi en temps réel sans maturation du chromophore. Cependant, des défis subsistent dans l’optimisation de ces systèmes en raison d’une compréhension limitée des interactions fluorogène-protéine, des dynamiques de liaison et des comportements photophysiques sous illumination. Ce projet de thèse vise à caractériser les modes de liaison des systèmes FAST à une résolution atomique à l'aide de la spectroscopie RMN multidimensionnelle, de la cristallographie aux rayons X et de la spectroscopie UV-visible. Des résultats récents suggèrent que les fluorogènes peuvent adopter plusieurs modes de liaison et que de légères modifications chimiques affectent les cinétiques de liaison et l’intensité de la fluorescence. En intégrant un dispositif d'illumination laser dans les investigations RMN, nous explorerons plus avant comment l'absorption lumineuse influence la conformation et la dynamique des fluorogènes. Les connaissances ainsi acquises permettront de concevoir de manière rationnelle des variants optimisés de FAST, améliorant leurs performances pour des applications spécifiques en microscopie et faisant progresser le domaine de l’imagerie par fluorescence.

Dynamique et désordre molèculaire dans la machinerie de réplication du virus SRAS CoV 2

La protéine de nucléocapside (N) du coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) est essentielle à la réplication du génome, à l'encapsidation du génome viral et à la régulation de la transcription des gènes. La protéine est fortement désordonnée, comprenant deux terminaisons désordonnées et un domaine central désordonné qui sont essentiels à sa fonction. Le domaine central contient un certain nombre de mutations importantes qui sont responsables de l'amélioration de l'aptitude virale et comprend une région qui est hyperphosphorylée pendant le cycle viral. La spectroscopie RMN est l'outil de choix pour étudier le comportement conformationnel des protéines intrinsèquement désordonnées, une classe abondante de protéines qui sont fonctionnelles sous leur forme désordonnée. Elles représentent 40 % du protéome et sont trop dynamiques pour être étudiées par cristallographie ou microscopie électronique. Le laboratoire hôte a développé un grand nombre d'outils uniques basés sur la RMN pour aider à comprendre la fonction de cette classe de protéines à une résolution atomique. Nous utiliserons la RMN, la RMN paramagnétique, la diffusion aux petits angles, le FRET de molécule unique et la microscopie électronique, en combinaison avec la simulation de la dynamique moléculaire, pour décrire les interactions de N avec les protéines partenaires virales et l'ARN viral, pour décrire le processus d'encapsidation du génome viral par la protéine nucléocapside, ainsi que l'impact des mutations présentes dans les variantes de la préoccupation. Les résultats seront corrélés avec la microscopie optique et électronique, réalisée en collaboration.

Top