Exploration des exoplanètes rocheuses avec le JWST

L’un des principaux objectifs du télescope spatial JWST est de caractériser, pour la première fois, les atmosphères des exoplanètes rocheuses et tempérées, une étape clé dans la recherche de mondes potentiellement habitables. Les exoplanètes rocheuses tempérées accessibles au JWST sont principalement celles en orbite autour d’étoiles de type M. Cependant, une question majeure demeure quant à la capacité des planètes orbitant autour de ces étoiles froides à conserver leur atmosphère. En 2024, un programme exceptionnel de 500 heures de temps discrétionnaire du directeur (Director’s Discretionary Time, DDT), intitulé Rocky Worlds, a été consacré à cette thématique, soulignant son importance stratégique au plus haut niveau (NASA, STScI).
L’objectif principal de ce projet de doctorat est : 1) Analyser l’ensemble des données d’éclipses JWST/MIRI disponibles pour les exoplanètes rocheuses issues du programme Rocky Worlds et d’autres programmes publics, en utilisant un cadre d’analyse cohérent et homogène ; 2) Rechercher des tendances à l’échelle des populations dans les observations et de les interpréter à l’aide de simulations atmosphériques tridimensionnelles.
À travers ce travail, nous visons à identifier les processus physiques qui régissent la présence et la composition des atmosphères des exoplanètes rocheuses tempérées.

Estimation du bruit neutronique stochastique à l’aide d’une approche numérique de simulation d’événements rares. Application au suivi de la réactivité de systèmes nucléaires.

Ce sujet de thèse vise à développer une méthode innovante permettant de caractériser la réactivité de systèmes fissiles à partir de l’analyse de leurs fluctuations stochastiques (bruit neutronique à zéro puissance). Dans un milieu fissile sous-critique, les neutrons issus de fissions spontanées peuvent initier des réactions en chaîne plus ou moins courtes et aléatoires, générant un signal fluctuant. Ce bruit porte une information essentielle sur la distance du système étudié à la criticité, paramètre déterminant pour la sûreté des installations nucléaires (prévention de différents accidents de sûreté-criticité) et pour la détection de matières fissiles non déclarées (sécurité et non-prolifération de matières nucléaires).

Les approches théoriques existantes pour déduire la réactivité d'un système à partir du bruit neutronique sont en effet limitées aux situations idéalisées et deviennent inadaptées dans des configurations réalistes, en particulier lorsque le système est fortement sous critique ou lorsqu’il existe des incertitudes fortes sur sa géométrie ou sa composition (cas des coriums de Fukushima Daiichi ou du stockage de combustibles irradiés). Recourir à des simulations Monte Carlo constitue alors une alternative naturelle, mais ces simulations nécessitent la mise en oeuvre de méthodes de réduction de variance qui ne peuvent préserver correctement les fluctuations stochastiques.

La thèse propose d’adresser ce verrou scientifique en adaptant une méthode de réduction de variance relativement récente dite Adaptive Multilevel Splitting (AMS), utilisée pour explorer efficacement des événements rares tout en conservant leurs propriétés statistiques. L’objectif est d’étendre cette méthode au cas du transport neutronique dans des milieux reproducteurs et d’en faire un outil capable de simuler fidèlement les corrélations temporelles caractéristiques du bruit neutronique. Après développement théorique, l’algorithme sera implémenté dans Geant4, puis comparé à des solutions analytiques et validé expérimentalement via des mesures in situ (utilisant des sources de neutron ou auprès de réacteur). À terme, ce travail pourra ouvrir sur des applications directes en surveillance nucléaire, diagnostic de sûreté et physique des détecteurs, mais présente également des perspectives en physique fondamentale et en physique médicale.

Façonnage spatio-temporel de l'émission harmonique d'ordre élevé dans les cristaux nanostructurés

Nous proposons d’étudier la manipulation spatio-temporelle du rayonnement émis par la génération d’harmoniques d’ordre élevé, en mettant à profit les progrès des technologies de nanofabrication. L’approche consiste à transposer les méthodes développées pour les méta-optiques au régime de champs forts spécifique à la génération d’harmoniques. Le(la) candidat(e) devra explorer différentes stratégies de conception pour contrôler les propriétés spatio-temporelles de ce rayonnement, qui est intrinsèquement lié à la large bande spectrale des impulsions attosecondes. Ces concepts seront ensuite implémentés et validés expérimentalement. Ce projet a pour objectif de renforcer l’intégration de la génération d’harmoniques d’ordre élevé dans des dispositifs optoélectroniques, ouvrant ainsi la voie à de nouvelles applications en photonique ultrarapide.

Formation des magnétars : de l’amplification à la relaxation des champs magnétiques les plus extrêmes

Les magnétars sont les étoiles à neutrons arborant les plus forts champs magnétiques connus dans l’Univers, observées comme des sources galactiques de haute énergie. La formation de ces objets figure parmi les scénarios les plus étudiés pour expliquer certaines des explosions les plus violentes : les supernovae superlumineuses, les hypernovae et les sursauts gamma. Notre équipe a réussi au cours des dernières années à reproduire numériquement des champs magnétiques d’une intensité comparable à celle des magnétars en simulant des mécanismes d'amplification dynamo qui se développent dans les premières secondes après la formation de l’étoile à neutrons. La plupart des manifestations observationnelles des magnétars nécessitent cependant que le champ magnétique survive sur des échelles de temps bien plus longues (de quelques semaines pour les supernovae superlumineuses à des milliers d’années pour les magnétars galactiques). Cette thèse consistera à développer des simulations numériques 3D de relaxation du champ magnétique initialisées à partir de différents états dynamo calculés précédemment par l’équipe, en les prolongeant vers des stades plus tardifs après la naissance de l’étoile à neutrons lorsque la dynamo n’est plus active. L’étudiant.e déterminera ainsi comment le champ magnétique turbulent généré dans les premières secondes va évoluer pour éventuellement atteindre un état d’équilibre stable, dont on cherchera à caractériser la topologie et à le confronter aux observations électromagnétiques.

Comprendre les signaux émis par les liquides en mouvement

L'élasticité est l'une des plus anciennes propriétés physiques de la matière condensée. Elle s'exprime par une constante de proportionnalité G entre la contrainte appliquée (s) et la déformation (?) : s = G.? (loi de Hooke). L'absence de résistance à la déformation de cisaillement (G' = 0) indique un comportement de type liquide (modèle de Maxwell). Longtemps considérée comme spécifique aux solides, l'élasticité de cisaillement a récemment été identifiée dans les liquides à l'échelle submillimétrique notamment mis en évidence par un groupe au Laboratoire Léon Brillouin [1].
L'identification de l'élasticité de cisaillement des liquides (G' non nul) est une promesse de découverte de nouvelles propriétés liquides. Nous avons ainsi montré qu'un liquide confiné change de température sous l'effet d'un écoulement. Pourtant, aucun modèle classique (Poiseuille, Navier-Stokes, Maxwell) ne prédit cet effet, car sans corrélation à longue portée entre les molécules (c'est-à-dire sans élasticité), l'écoulement est dissipatif, donc athermique. Pour qu'un changement de température soit induit par l'écoulement (sans source de chaleur), le liquide doit présenter une élasticité et cette élasticité doit être sollicitée mécaniquement [1,2]. La thèse de doctorat explorera la conversion de l'énergie mécanique de l'écoulement en températures hors-équilibre (Non-Fourier) [2]. Nous exploiterons notamment cette capacité de conversion pour développer une nouvelle génération de systèmes microfluidiques (brevet FR2206312).
Nous explorerons également l'impact du mouillage sur l'écoulement et, réciproquement, nous examinerons comment l'écoulement liquide modifie la dynamique solide (THz) du substrat [3]. Des méthodes performantes, disponibles uniquement dans les Très Grandes Installations de Recherche (TGIR) comme l'ILL, seront utilisées pour sonder la dynamique hors-équilibre des phonons. Enfin, nous renforcerons nos collaborations existantes avec des théoriciens.

Le sujet de thèse porte sur le mouillage, les effets thermiques macroscopiques, la dynamique des phonons et le transport liquide.
Références:
1. A. Zaccone, K. Trachenko, “Explaining the low-frequency shear elasticity of confined liquids" PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117
2. E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi: 10.1038/s41598-020-69404-1.
3. M. Warburton, J. Ablett, P. Baroni, JP Rueff, L. Paolasini, L. Noirez, “Identification by Inelastic X-Ray scattering of bulk alteration of solid dynamics due to Liquid Wetting”, J. of Molecular Liquids 391 (2023) 123342202.

Intégration des Nanotubes de carbone alignés dans les batteries sans anode : mécanisme et optimisation des cellules

Les batteries sans anode ou à anode libre suscitent un intérêt croissant en raison de leur excellente densité énergétique, de leur faible coût et de la facilité de mise à l’échelle de leur procédé de fabrication. L’exploration des batteries sans anode pourrait offrir une avancée majeure dans le domaine du stockage de l’énergie, en utilisant la réserve de lithium déjà présente dans la cathode NMC pour effectuer des cycles réversibles après un processus de formation initial. Cette approche permettrait de réduire l’épaisseur globale, le nombre d’étapes de traitement et le coût des matériaux, tout en offrant une excellente densité énergétique. Les nanotubes de carbone alignés verticalement (VACNTs) sur des substrats métalliques peuvent représenter un choix intéressant pour cette application en raison de leur faible épaisseur, de la reproductibilité de leur processus de synthèse et de leurs propriétés de surface uniformes, qui ont déjà démontré leur intérêt applicatif dans le domaine des supercondensateurs. Dans ce projet de doctorat, nous explorerons une nouvelle voie d’application : les batteries sans anode, où les VACNT servent de substrat de dépôt pour le lithium ou le sodium. Nous étudierons l’électrochimie des VACNTs dans les batteries lithium sans anode (avec électrolytes liquides et solides) ainsi que dans les batteries sodium sans anode avec électrolyte liquide. Le doctorant travaillera sur l’optimisation de la synthèse des VACNTs afin d’ajuster leur épaisseur et leur densité pour les adapter à leurs propriétés électrochimiques. Des études post-cyclage (Raman et MEB) seront menées afin d’analyser l’effet du cyclage et des électrolytes sur les couches de VACNTs. L’objectif du projet est d’explorer les opportunités d’application des VACNTs dans divers systèmes de stockage d’énergie, ce qui pourrait ouvrir de nouvelles perspectives d’utilisation et de valorisation.

Comprendre l’origine de la remarquable efficacité de formation des galaxies lointaines

Le télescope spatial James Webb révolutionne notre compréhension de l’univers lointain. Un résultat s’impose qui questionne nos modèles : la très grande efficacité de formation d’étoiles des galaxies lointaines. Mais ce constat est dérivé de manière indirecte : on mesure la masse d’étoiles dans les galaxies, pas leur taux de formation d’étoiles. C’est la principale faiblesse du James Webb. Le but de cette thèse est de remédier à cette faiblesse du James Webb en utilisant sa capacité de résolution angulaire, qui n’a jusqu’ici pas été prise en compte afin d’obtenir une mesure plus robuste du SFR des galaxies distantes. On en déduira une loi qui permettra d’améliorer la robustesse de la détermination du SFR grâce aux propriétés morphologiques et en combinant les données du James Webb avec celles d’ALMA (z=1-3). Puis on l’appliquera à l’univers lointain (z=3-6, 2e partie) et on l’utilisera comme benchmark pour les simulations numériques (3e partie).

Analyse spectro-temporelle de l'émission rémanente des sursaut gamma cosmiques détectés avec SVOM

Forme exotique du noyau : spectroscopie d'actinides déficients en neutrons avec le détecteur SEASON

La question de la limite de stabilité des noyaux, tant en terme d'asymétrie protons/neutrons qu'en terme de masse, est une question importante de la physique nucléaire moderne. Dans la région des noyaux lourds, les actinides déficients en neutrons présentent un intérêt particulier. En effet, de fortes déformations octupolaires, donnant au noyau une forme de poire, sont prédites et ont même été déjà observées dans certains noyaux. Ces déformations semblent jouer un rôle important sur la stabilité des noyaux, sur les modes de désintégration accessibles, voire sur des effets liés à la physique au-delà du modèle standard. L'objectif de cette thèse est de continuer l'étude systématique de ces déformations en mettant à profit le tout nouveau détecteur SEASON, dont la première expérience aura lieu en février 2026 à l'université de Jyväskylä en Finlande. La thèse sera principalement centrée sur l'analyse des données d'une expérience qui fera partie de la campagne réalisée à l'été 2026 à Jyväskylä. Plusieurs expériences sont envisagées en utilisant des réactions de fusion-évaporation avec différents couples faisceau/cible. Les actinides ainsi produits seront envoyés dans le détecteur SEASON où leur spectroscopie de décroissance aura lieu. En fonction de l'évolution des plannings, une autre campagne de mesures pourra être envisagée au cours de l'année 2027. Le retour de l'instrument en France pour être installé auprès du spectromètre S3 à GANIL (Caen) pourrait également avoir lieu au cours de la thèse.
La thèse pourra être codirigée avec l'Université de Jyväskylä.

TRANSFORMER : de la généalogie des halos de matière noire aux propriétés baryoniques des amas de galaxies.

La thèse propose de prédire les propriétés baryoniques des amas de galaxies en fonction de l'historique de la formation des halos de matière noire, au moyen de réseaux de neurones novateurs (Transformers). Le travail fera appel à des simulations numériques intensives. Ce projet se situe dans le cadre général de la détermination des paramètres cosmologiques par l'observation des amas de galaxies en rayons X. Il est en lien direct avec le programme international Heritage dans le champ profond XMM-Euclid FornaX.

Top