HLA-G: Une nouvelle cible pour l'adressage des thérapies antitumorales

L'objectif principal de ce projet est de démontrer que la molécule HLA-G peut être utilisée pour adresser les traitements contre une variété de tumeurs, en particulier celles qui manquent d'antigènes spécifiques de la tumeur (TSA).

Rationnel du projet :
HLA-G présente deux caractéristiques principales qui la rendent intéressante pour la thérapie antitumorale:
Fonction immuno-inhibitrice: HLA-G agit comme un point de contrôle immunitaire, bloquant les cellules immunitaires cytotoxiques anti-tumorales et permettant aux cellules tumorales d'échapper à la surveillance immunitaire.
Expression Sélective: HLA-G est une molécule principalement fœtale, pratiquement pas exprimée chez l’adulte. Néanmoins, elle est couramment réexprimée dans de nombreuses tumeurs solides.
L'expression restreinte de HLA-G dans les tissus pathologiques, principalement les cellules tumorales, en fait une cible attrayante pour le ciblage thérapeutique, et c’est cette caractéristique qui sera exploitée dans ce projet. En effet, une molécule spécifiquement exprimée par une tumeur constitue un TSA idéal, permettant un traitement ciblé avec des effets secondaires minimes sur les cellules saines.
Malheureusement, les TSA spécifiques à une tumeur sont rares, coûteux à développer, et pour la majorité des tumeurs, il n’en existe pas à ce jour.
HLA-G, étant exprimée dans la majorité des types tumoraux, qu'ils soient communs ou rares, constitue un excellent candidat TSA multi-tumeurs.

Méthodologie du Projet
Le projet utilisera des puces microfluidiques et des avatars 3D de tumeurs (sphéroïdes tumoraux dérivés de patients atteints de cancer du rein) déjà en place au laboratoire pour évaluer l'efficacité de BiTEs (Bi-Specific T-cell Engagers) ciblant d’un côté HLA-G comme molécule d’adressage et de l’autre côté des antigènes spécifiques des cellules cytotoxiques infiltrant les tumeurs (lymphocytes T et cellules NK).

Moyens et expertise
Le projet s'appuiera sur l'expertise du laboratoire sur 1. La molécule HLA-G et ses fonctions en immunologie et immuno-oncologie, sujet principal du laboratoire depuis plus de 20 ans, 2. L'environnement immunologique des tumeurs rénales, en particulier les cellules cytotoxiques intratumorales, et 3. L’expertise clinique en immuno-uro-oncologie clinique des cliniciens de l’hôpital St Louis, Paris.
Le projet utilisera des technologies de pointe, notamment la cytométrie spectrale et l'étude d'avatars 3D de tumeurs en puces microfluidiques.

Conclusion
En utilisant des technologies innovantes et en s'appuyant sur une expertise solide, le projet vise à développer de nouvelles stratégies thérapeutiques applicables à un large éventail de cancers exprimant HLA-G.

Supraconductivité chirale et transport thermique

Dans ce projet de doctorat, nous voulons explorer deux supraconducteurs non conventionnels bien connus par transport thermique, à travers une approche originale combinant des sondes macroscopiques et microscopiques. Ces supraconducteurs sont UPt3 et UTe2, choisis car ils permettent d'aborder directement deux questions, au cœur des débats actuels dans la communauté internationale. UPt3 traite de la question de la supraconductivité topologique, tandis qu'UTe2 nécessite une identification claire de son paramètre d'ordre supraconducteur "triplet de spin". La supraconductivité topologique est un sujet très actif sur le plan théoriquen et en raison de son intérêt potentiel dans le domaine de l'ingénierie quantique. Cependant, les résultats expérimentaux dans ce domaine sont rares, et souvent controversés. UPt3, qui a été le premier supraconducteur présentant des transitions entre phases supraconductrices, est aussi le système qui a les preuves les plus convaincantes de supraconductivité chirale.
L'objectif est d'explorer les prédictions sur l'existence d'un effet Hall thermique anormal (à champ nul), qui découlerait des courants de bord chiraux. Une nouvelle approche est proposée, combinant un dispositif conçu pour la mesure macroscopique de la conductivité thermique et de l'effet Hall thermique, avec une sonde microscopique réalisant une Spectroscopie Thermique par Balayage. Cela sera réalisé grâce à une collaboration entre deux laboratoires à Grenoble : une équipe de Pheliqs, maîtrisant la croissance de cristaux de haute qualité de ces systèmes ainsi que les mesures de transport thermique à basse température, et deux équipes de l'Institut Néel, expertes en microscopie SQUID par balayage et en mesures thermiques microscopiques jusqu'à des températures sub-Kelvin. Avec ce projet, l'étudiant en doctorat acquerra des compétences très variées, allant de la préparation d'échantillons, à l'instrumentation à basse température, et aux enjeux majeurs actuels dans le domaine des matériaux quantiques.

Thérapie génique par trans-splicing pour la maladie de Stargardt : construction d’outils moléculaires et cellulaires pour cibler les mutations du gène ABCA4

Ce projet vise à développer une approche thérapeutique innovante pour la maladie de Stargardt, une dégénérescence maculaire causée par des mutations du gène ABCA4. La stratégie repose sur l’utilisation de la technologie SMaRT (Spliceosome-Mediated RNA Trans-splicing), qui permet de corriger les mutations au niveau du transcriptome en remplaçant les exons mutés de l’ARNm endogène par épissage en trans avec un ARN exogène (PTM). Les PTM ne contenant qu’une partie de l’ARNm à corriger, cette approche permettra de surmonter l’obstacle posé par la taille de l’ADNc ABCA4 qui dépasse la capacité d’emport de l’AAV. Le projet inclut plusieurs étapes faisant appel à des techniques de biologie moléculaire et cellulaire : construction de vecteurs pour exprimer les PTM, production de lignées cellulaires pour tester l'efficacité de domaines de liaison (BD) permettant l’épissage en trans et, criblage des BD pour l’optimisation des PTM. Les PTM sélectionnés seront ensuite testés dans des modèles d’organoïdes rétiniens et des modèles animaux pour démontrer leur potentiel thérapeutique pour traiter cette maladie génétique. L’AAV étant actuellement le vecteur le plus efficace pour transduire la rétine, ce projet ouvrira des nouvelles perspectives thérapeutiques pour la maladie de Stargardt.

DÉFENSOMES, CONTRE-DÉFENSOMES ET REMODELAGE DES COMMUNAUTÉS MICROBIENNES

Le transfert horizontal de gènes (HGT) permet aux bactéries de s'adapter rapidement à de nouveaux niches écologiques et défis. Ce processus est principalement facilité par les éléments génétiques mobiles (MGE), tels que les bactériophages (phages), les plasmides et les éléments transposables, qui sont présents dans la plupart des génomes, souvent en multiples copies. Le potentiel de conflits découlant des interactions entre les MGE et les bactéries a conduit à l'évolution de mécanismes de défense sophistiqués visant à filtrer, apprivoiser ou inactiver ces éléments. Parmi les exemples bien étudiés d'immunité anti-MGE figurent les systèmes de restriction-modification (R-M), l'infection abortive et les systèmes CRISPR-Cas. Ensemble, ces systèmes ont révolutionné le domaine de l'ingénierie génomique en tant qu'outils de clivage, de stabilisation et d'édition précis, et ont poussé la quête de nouveaux mécanismes de défense ainsi que de stratégies de contre-défense contre les MGE, capables de limiter leur action.
La dernière décennie a vu l'identification et, dans certains cas, la caractérisation mécanistique d'un arsenal étendu de systèmes de défense anti-MGE jusqu'alors inconnus. Ces systèmes peuvent être déployés à différentes étapes du processus d'infection par les MGE, soit en dégradant les acides nucléiques envahissants, en inhibant leur réplication, ou en induisant la dormance ou la mort des cellules infectées pour stopper la propagation de l'élément mobile à travers la population microbienne. Avec le nombre croissant de familles de défensomes identifiées, une découverte parallèle a été celle des systèmes de contre-défense codés par les MGE. Ces contre-défensomes déploient de multiples mécanismes pour inactiver les systèmes immunitaires de l'hôte (au-delà des mutations génétiques des bactériophages), incluant la liaison directe aux protéines immunitaires, la modification post-traductionnelle des protéines immunitaires, la ciblage des messagers secondaires et la contreaction des systèmes de défense épuisant des métabolites.
Beaucoup des systèmes de défense et de contre-défense connus à ce jour ont été découverts grâce à l'exploration bioinformatique des bases de données génomiques de référence (par exemple, NCBI RefSeq). Cependant, celles-ci surreprésentent des organismes qui peuvent être cultivés en laboratoire, offrant ainsi une vue limitée de la fraction inconnue de la diversité microbienne environnementale qui reste non cultivée. Afin de caractériser cette diversité cachée, nous avons récemment effectué un criblage à grande échelle de génomes de populations bactériennes de haute qualité, reconstruits à partir de métagénomes environnementaux, mettant en évidence la diversité des défensomes et le potentiel de coopération fonctionnelle ainsi que la génération de nouvelles fonctions entre différents modules défensifs [1]. Les résultats de cette étude ont soulevé des questions supplémentaires relatives à la nature des conflits et alliances entre les familles de systèmes de défense, l'étendue des stratégies de contre-défense dans le phagome environnemental, ainsi que la perspective de prioriser les gènes de défense 'core' pour le développement d'antimicrobiens capables de cibler une espèce bactérienne entière. Nous proposons d'aborder ces questions dans la proposition actuelle comme suit:

1) Premièrement, l'analyse de la co-occurrence / co-localisation des systèmes de défense et de l'immunité synergique à travers les espèces bactériennes et les biomes ;
2) Deuxièmement, une cartographie à grande échelle du contre-défensome des phagomes à travers plusieurs environnements ;
3) Troisièmement, l'analyse du 'core'-défensome à travers les espèces bactériennes, avec une validation supplémentaire du concept selon lequel ces gènes (dont beaucoup sont maintenant connus pour être essentiels) peuvent être utilisés comme cibles pour le développement d'antimicrobiens visant à éliminer une espèce bactérienne entière.

Dosimétrie radiologique des accidents de grande échelle : utilisation de la spectroscopie RPE pour le tri de la population par la mesure d'écrans de smartphones.

Lors d’une urgence radiologique de grande ampleur impliquant des sources d’irradiation externe, il est nécessaire de disposer de méthodes permettant d’identifier, parmi la population, les personnes ayant été exposées et nécessitant une prise en charge prioritaire.A ce jour, il n’existe pas de méthodes opérationnelles permettant un tel tri. Les verres des écrans tactiles des smartphones gardent en« mémoire » la trace d’une irradiation aux rayonnements ionisants par le biais de la formation de défauts dits « radio-induits ». La mesure et la quantification de ces défauts ponctuels, notamment par spectroscopie à résonance paramagnétique électronique (RPE),permet d’estimer la dose déposée dans le verre et donc d’estimer l’exposition associée à l’irradiation. Le travail de thèse proposé ici s’intéresse notamment aux verres alkali-aluminosilicates utilisés dans les écrans tactiles des téléphones portables qui sont à ce jour les meilleurs candidats pour développer de nouvelles capacités de mesure dans le contexte de l’accident impliquant un grand nombre de victimes.

Nous nous concentrerons en particulier sur l'identification des défauts ponctuels en fonction du modèle de verre utilisé dans les smartphone par simulation des spectres RPE afin d'optimiser la méthode proposée de dosimétrie.

Modélisation de la réponse instrumentale des télescopes spatiaux avec un modèle optique différentiable

Contexte

L'effet de lentille gravitationnelle faible [1] est une sonde puissante de la structure à grande échelle de notre univers. Les cosmologistes utilisent l'effet de lentille faible pour étudier la nature de la matière noire et sa distribution spatiale. Les missions d'observation de l'effet de lentille faible nécessitent des mesures très précises de la forme des images de galaxies. La réponse instrumentale du télescope, appelée fonction d'étalement du point (PSF), produit une déformation des images observées. Cette déformation peut être confondue avec les effets d'un faible effet de lentille sur les images de galaxies, ce qui constitue l'une des principales sources d'erreur systématique lors de la recherche sur les faibles effets de lentille. Par conséquent, l'estimation d'un modèle de PSF fiable et précis est cruciale pour le succès de toute mission de faible lentille [2]. Le champ de la PSF peut être interprété comme un noyau convolutionnel qui affecte chacune de nos observations d'intérêt, qui varie spatialement, spectralement et temporellement. Le modèle de la PSF doit être capable de gérer chacune de ces variations. Nous utilisons des étoiles spécifiques considérées comme des sources ponctuelles dans le champ de vision pour contraindre notre modèle PSF. Ces étoiles, qui sont des objets non résolus, nous fournissent des échantillons dégradés du champ de la PSF. Les observations subissent différentes dégradations en fonction des propriétés du télescope. Ces dégradations comprennent le sous-échantillonnage, l'intégration sur la bande passante de l'instrument et le bruit additif. Nous construisons finalement le modèle de la PSF en utilisant ces observations dégradées et utilisons ensuite le modèle pour déduire la PSF à la position des galaxies. Cette procédure constitue le problème inverse mal posé de la modélisation de la PSF. Voir [3] pour un article récent sur la modélisation de la PSF.

La mission Euclid récemment lancée représente l'un des défis les plus complexes pour la modélisation de la PSF. En raison de la très large bande passante de l'imageur visible (VIS) d'Euclid, allant de 550 nm à 900 nm, les modèles de PSF doivent capturer non seulement les variations spatiales du champ de PSF, mais aussi ses variations chromatiques. Chaque observation d'étoile est intégrée avec la distribution d'énergie spectrale (SED) de l'objet sur l'ensemble de la bande passante du VIS. Comme les observations sont sous-échantillonnées, une étape de super-résolution est également nécessaire. Un modèle récent appelé WaveDiff [4] a été proposé pour résoudre le problème de modélisation de la PSF pour Euclid et est basé sur un modèle optique différentiable. WaveDiff a atteint des performances de pointe et est en train d'être testé avec des observations récentes de la mission Euclid.

Le télescope spatial James Webb (JWST) a été lancé récemment et produit des observations exceptionnelles. La collaboration COSMOS-Web [5] est un programme à grand champ du JWST qui cartographie un champ contigu de 0,6 deg2. Les observations de COSMOS-Web sont disponibles et offrent une occasion unique de tester et de développer un modèle précis de PSF pour le JWST. Dans ce contexte, plusieurs cas scientifiques, en plus des études de lentille gravitationnelle faible, peuvent grandement bénéficier d'un modèle PSF précis. Par exemple, l'effet de lentille gravitationnel fort [6], où la PSF joue un rôle crucial dans la reconstruction, et l'imagerie des exoplanètes [7], où les speckles de la PSF peuvent imiter l'apparence des exoplanètes, donc la soustraction d'un modèle de PSF exact et précis est essentielle pour améliorer l'imagerie et la détection des exoplanètes.

Projet de doctorat

Le candidat visera à développer des modèles PSF plus précis et plus performants pour les télescopes spatiaux en exploitant un cadre optique différentiable et concentrera ses efforts sur Euclid et le JWST.

Le modèle WaveDiff est basé sur l'espace du front d'onde et ne prend pas en compte les effets au niveau du pixel ou du détecteur. Ces erreurs au niveau des pixels ne peuvent pas être modélisées avec précision dans le front d'onde car elles se produisent naturellement directement sur les détecteurs et ne sont pas liées aux aberrations optiques du télescope. Par conséquent, dans un premier temps, nous étendrons l'approche de modélisation de la PSF en tenant compte de l'effet au niveau du détecteur en combinant une approche paramétrique et une approche basée sur les données (apprises). Nous exploiterons les capacités de différenciation automatique des cadres d'apprentissage automatique (par exemple TensorFlow, Pytorch, JAX) du modèle WaveDiff PSF pour atteindre l'objectif.

Dans une deuxième direction, nous envisagerons l'estimation conjointe du champ de la PSF et des densités d'énergie spectrale (SED) stellaires en exploitant des expositions répétées ou des dithers. L'objectif est d'améliorer et de calibrer l'estimation originale de la SED en exploitant les informations de modélisation de la PSF. Nous nous appuierons sur notre modèle PSF, et les observations répétées du même objet changeront l'image de l'étoile (puisqu'elle est imagée sur différentes positions du plan focal) mais partageront les mêmes SED.

Une autre direction sera d'étendre WaveDiff à des observatoires astronomiques plus généraux comme le JWST avec des champs de vision plus petits. Nous devrons contraindre le modèle de PSF avec des observations de plusieurs bandes pour construire un modèle de PSF unique contraint par plus d'informations. L'objectif est de développer le prochain modèle de PSF pour le JWST qui soit disponible pour une utilisation généralisée, que nous validerons avec les données réelles disponibles du programme COSMOS-Web JWST.

La direction suivante sera d'étendre les performances de WaveDiff en incluant un champ continu sous la forme d'une représentation neuronale implicite [8], ou de champs neuronaux (NeRF) [9], pour traiter les variations spatiales de la PSF dans l'espace du front d'onde avec un modèle plus puissant et plus flexible.

Enfin, tout au long de son doctorat, le candidat collaborera à l'effort de modélisation de la PSF par les données d'Euclid, qui consiste à appliquer WaveDiff aux données réelles d'Euclid, et à la collaboration COSMOS-Web pour exploiter les observations du JWST.

Références

[1] R. Mandelbaum. “Weak Lensing for Precision Cosmology”. In: Annual Review of Astronomy and Astro- physics 56 (2018), pp. 393–433. doi: 10.1146/annurev-astro-081817-051928. arXiv: 1710.03235.
[2] T. I. Liaudat et al. “Multi-CCD modelling of the point spread function”. In: A&A 646 (2021), A27. doi:10.1051/0004-6361/202039584.
[3] T. I. Liaudat, J.-L. Starck, and M. Kilbinger. “Point spread function modelling for astronomical telescopes: a review focused on weak gravitational lensing studies”. In: Frontiers in Astronomy and Space Sciences 10 (2023). doi: 10.3389/fspas.2023.1158213.
[4] T. I. Liaudat, J.-L. Starck, M. Kilbinger, and P.-A. Frugier. “Rethinking data-driven point spread function modeling with a differentiable optical model”. In: Inverse Problems 39.3 (Feb. 2023), p. 035008. doi:10.1088/1361-6420/acb664.
[5] C. M. Casey et al. “COSMOS-Web: An Overview of the JWST Cosmic Origins Survey”. In: The Astrophysical Journal 954.1 (Aug. 2023), p. 31. doi: 10.3847/1538-4357/acc2bc.
[6] A. Acebron et al. “The Next Step in Galaxy Cluster Strong Lensing: Modeling the Surface Brightness of Multiply Imaged Sources”. In: ApJ 976.1, 110 (Nov. 2024), p. 110. doi: 10.3847/1538-4357/ad8343. arXiv: 2410.01883 [astro-ph.GA].
[7] B. Y. Feng et al. “Exoplanet Imaging via Differentiable Rendering”. In: IEEE Transactions on Computational Imaging 11 (2025), pp. 36–51. doi: 10.1109/TCI.2025.3525971.
[8] Y. Xie et al. “Neural Fields in Visual Computing and Beyond”. In: arXiv e-prints, arXiv:2111.11426 (Nov.2021), arXiv:2111.11426. doi: 10.48550/arXiv.2111.11426. arXiv: 2111.11426 [cs.CV].
[9] B. Mildenhall et al. “NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis”. In: arXiv e-prints, arXiv:2003.08934 (Mar. 2020), arXiv:2003.08934. doi: 10.48550/arXiv.2003.08934. arXiv:2003.08934 [cs.CV].

Analyse et étude expérimentale de structures capillaires pour atténuer l’influence des forces magnéto-gravitaires sur le refroidissement en hélium liquide des futurs aimants supraconducteur HTS

Avec la nécessité pour la physique de disposer de champs magnétiques de plus en plus élevés, le CEA est amené à développer et réaliser des aimants supraconducteurs qui permettront de produire des champs magnétiques de plus de 30 T. Le bobinage de ces électro-aimants est réalisé avec des matériaux supraconducteurs dont la résistance électrique est extrêmement faible aux températures cryogéniques (quelques Kelvins). Ils peuvent ainsi transporter de forts courants (>10 kA) tout en dissipant par effet Joule un minimum de chaleur. Le refroidissement à ces basses températures est obtenu grâce à l’utilisation d’hélium liquide. Or, l’hélium est diamagnétique. Ainsi les champs magnétiques vont induire des forces volumiques qui s’ajoutent ou s’opposent à la gravité au sein de l’hélium. Ces forces magnéto-gravitaires perturbent les phénomènes convectifs nécessaires au refroidissement des câbles supraconducteurs. Cela peut entrainer une élévation de leur température et une perte de leur état supraconducteur primordial pour leur bon fonctionnement. Afin de contourner ce phénomène, un système de refroidissement inédit en cryomagnétisme sera étudié. Ce système de refroidissement sera développé avec des caloducs dont le fonctionnement est basé sur les forces capillaires à priori indépendantes des forces magnéto-gravitaires induites par les forts champs magnétiques. Ces structures capillaires peuvent prendre plusieurs formes (micro-canaux, mousse, maille …), ainsi dans le cadre de la thèse ces différentes structures seront étudiées théoriquement puis expérimentalement, à la fois sans et en présence de forces magnétiques afin de déterminer les structures les plus adaptées aux aimants supraconducteurs du futur.

Mutagénèse et sélection de catalyseurs enzymatiques pour des applications biotechnologiques : développement d’une méthode intégrée in vivo

La biocatalyse, c’est-à-dire l’utilisation d’enzymes en chimie de synthèse, offre un large éventail de solutions « vertes » pour de nombreuses conversions. Les avantages des catalyseurs enzymatiques sont multiples : les enzymes élargissent les possibilités de synthèse à des transformations non accessibles par les procédés de chimie conventionnelle, la catalyse est le plus souvent asymétrique et réalisée dans des conditions douces réduisant risques, coûts et pollutions. Pour atteindre le plein potentiel de la biocatalyse, il est nécessaire de diversifier la spécificité de substrat des enzymes natives et améliorer leur vitesse de réaction sur des composés non-naturels. Des approches complémentaires sont activement développées, allant de la recherche de nouveaux catalyseurs dans la biodiversité accessible dans les banques de données génomiques aux méthodes de mutagénèse aléatoires ou dirigées et de détection à haut débit des activités enzymatiques. Lorsque l’activité enzymatique confère un avantage de croissance aux cellules-hôtes, la sélection in vivo dans un contexte génétique approprié permet de cribler de très larges banques de variantes des enzymes cibles.
A l’interface entre génétique moléculaire et biocatalyse pour la synthèse de composés chimiques d’intérêt, l’objectif du projet de thèse est d’installer dans le chromosome de l’organisme modèle Escherichia coli un système de mutagénèse in vivo faisant appel à des éditeurs de bases couplés à la RNA polymérase du phage T7 dont l’activité sera dirigée sur le gène d’intérêt choisi. Une fois validée, la méthode sera appliquée à l’évolution d’enzymes de type déshydrogénase, déjà activement étudiées dans le laboratoire, pour la sélection de variantes efficaces pour des conversions chimiques d’intérêt industriel.
Le/la doctorant.e pourra acquérir une expertise en génétique moléculaire, biologie synthétique, évolution dirigée in vivo et en biocatalyse appliquée à la synthèse organique et bénéficiera de l’environnement multidisciplinaire de l’UMR Génomique Métabolique.

Elucidation de la voie de dégradation de l’homarine dans les océans

Contexte :
La production biologique primaire dans les océans exerce un contrôle important sur le CO2 atmosphérique. Le phytoplancton transforme chaque jour 100 millions de tonnes de CO2 en des milliers de composés organiques différents (1). La majeure partie de ces molécules(sous forme de métabolites) est biologiquement labile et retransformée en CO2 en l'espace de quelques heures ou de quelques jours. Les boucles de rétroaction climat-carbone médiées par ce réservoir de carbone organique dissous (COD) labile dépendent de ce réseau de microbes et de métabolites. En d’autres termes, la résilience de l'océan face aux changements planétaires (comme l’augmentation de la température et l’acidification) dépendra de la façon dont ce réseau réagit à ces perturbations.
En raison de sa courte durée de vie, ce pool de COD labile est difficilement observable. Ces métabolites microbiens constituent pourtant les voies les plus importantes dans l'océan du transport du carbone et sont assimilés par les bactéries marines comme sources de carbone et d’énergie. La connaissance des principales voies métaboliques (des gènes aux métabolites) est donc nécessaire pour modéliser les flux de carbone dans les océans. Pourtant, la diversité de ces molécules reste largement inexplorée et nombre d’entre elles n'ont pas de voies biosynthétique et/ou catabolique annotées. C’est le cas de l'homarine (N-méthylpicolinate), un composé abondant dans les océans. La teneur en homarine peut atteindre 400 mM chez la cyanobactérie marine Synechococchus (2) et cet organisme ubiquitaire contribue entre 10 et 20 % de la production primaire nette mondiale (3). L’homarine, par son abondance, est probablement un métabolite important dans le cycle du carbone.

Projet :
Dans ce projet de thèse, nous voulons élucider la voie de dégradation de l’homarine dans les océans.
Ruegeria pomeroyi DSS-3 est une bactérie aérobie à Gram négatif, membre du clade marin Roseobacter. Ses proches parents représentent environ 10-20 % du plancton bactérien de la couche mixte côtière et océanique (4). En laboratoire DSS-3 peut utiliser l'homarine comme seule source de carbone, mais on ne dispose à ce jour d’aucune information sur les gènes et les catabolites impliqués dans ce processus.
L'analyse comparative d’expériences de RNAseq menées sur des cultures de DSS-3 cultivées avec de l'homarine ou du glucose (contrôle)comme source de carbone permettra de repérer les gènes candidats impliqués dans la voie de dégradation. En parallèle, cette voie sera étudiée via une approche métabolomique par chromatographie liquide couplée à la spectrométrie de masse à très haute résolution. La différence de profil entre des métabolomes de DSS-3 provenant de cellules cultivées sur glucose comme source de carbone et ceux issus de cellules cultivées sur homarine aidera à détecter les catabolites de la voie. Enfin, les gènes candidats seront clonés pour une expression recombinante dans E. coli, les protéines correspondantes purifiées et leur activité caractérisée afin de reconstruire l'ensemble de la voie de dégradation de l'homarine in vitro.
L’analyse de l’expression de ces gènes dans les données du projet Tara Océans (5) sera la première étape pour mieux comprendre le rôle
de l'homarine dans le cycle du carbone.

Références :
(1) doi.org/10.1038/358741a0
(2) doi.org/10.1128/mSystems.01334-20
(3) doi.org/10.1073/pnas.1307701110
(4) doi.10.1038/nature03170
(5) https://fondationtaraocean.org/expedition/tara-oceans/

Dynamique de mouillage à l'échelle nanométrique

Le mouillage dynamique décrit les processus mis en jeu lorsqu’un liquide recouvre une surface solide. C’est un phénomène qui est omniprésent dans la nature, par exemple lorsque de la rosée perle sur une feuille, ainsi que dans de nombreux procédés d’intérêt industriel, depuis l’étalement d’une peinture sur un mur jusqu’à l’élaboration de procédés de revêtement de haute performance en nanotechnologie. Il est aujourd’hui relativement bien compris dans le cas de surfaces solides modèles parfaitement lisses et homogènes, mais pas dans le cas de surfaces réelles qui présentent des rugosités et/ou des hétérogénéités chimiques, pour lesquelles une modélisation fine des mécanismes reste un défi majeur. L’objectif principal de cette thèse est de comprendre comment la rugosité nanométrique influence la dynamique du mouillage.

Ce projet repose sur une approche interdisciplinaire combinant physique et chimie des surfaces. Le (La) doctorant(e) mènera des expériences modèles systématiques, associées à des outils de visualisation et de caractérisation multi-échelles (microscopie optique, AFM, réflectivité de rayons-X et neutrons…).

Grâce à la complémentarité des approches expérimentales, cette thèse permettra de mieux comprendre les mécanismes fondamentaux de dissipation d’énergie à la ligne de contact, depuis l’échelle nanométrique jusqu’à l’échelle millimétrique

Top