Mutagénèse et sélection de catalyseurs enzymatiques pour des applications biotechnologiques : développement d’une méthode intégrée in vivo
La biocatalyse, c’est-à-dire l’utilisation d’enzymes en chimie de synthèse, offre un large éventail de solutions « vertes » pour de nombreuses conversions. Les avantages des catalyseurs enzymatiques sont multiples : les enzymes élargissent les possibilités de synthèse à des transformations non accessibles par les procédés de chimie conventionnelle, la catalyse est le plus souvent asymétrique et réalisée dans des conditions douces réduisant risques, coûts et pollutions. Pour atteindre le plein potentiel de la biocatalyse, il est nécessaire de diversifier la spécificité de substrat des enzymes natives et améliorer leur vitesse de réaction sur des composés non-naturels. Des approches complémentaires sont activement développées, allant de la recherche de nouveaux catalyseurs dans la biodiversité accessible dans les banques de données génomiques aux méthodes de mutagénèse aléatoires ou dirigées et de détection à haut débit des activités enzymatiques. Lorsque l’activité enzymatique confère un avantage de croissance aux cellules-hôtes, la sélection in vivo dans un contexte génétique approprié permet de cribler de très larges banques de variantes des enzymes cibles.
A l’interface entre génétique moléculaire et biocatalyse pour la synthèse de composés chimiques d’intérêt, l’objectif du projet de thèse est d’installer dans le chromosome de l’organisme modèle Escherichia coli un système de mutagénèse in vivo faisant appel à des éditeurs de bases couplés à la RNA polymérase du phage T7 dont l’activité sera dirigée sur le gène d’intérêt choisi. Une fois validée, la méthode sera appliquée à l’évolution d’enzymes de type déshydrogénase, déjà activement étudiées dans le laboratoire, pour la sélection de variantes efficaces pour des conversions chimiques d’intérêt industriel.
Le/la doctorant.e pourra acquérir une expertise en génétique moléculaire, biologie synthétique, évolution dirigée in vivo et en biocatalyse appliquée à la synthèse organique et bénéficiera de l’environnement multidisciplinaire de l’UMR Génomique Métabolique.
Elucidation de la voie de dégradation de l’homarine dans les océans
Contexte :
La production biologique primaire dans les océans exerce un contrôle important sur le CO2 atmosphérique. Le phytoplancton transforme chaque jour 100 millions de tonnes de CO2 en des milliers de composés organiques différents (1). La majeure partie de ces molécules(sous forme de métabolites) est biologiquement labile et retransformée en CO2 en l'espace de quelques heures ou de quelques jours. Les boucles de rétroaction climat-carbone médiées par ce réservoir de carbone organique dissous (COD) labile dépendent de ce réseau de microbes et de métabolites. En d’autres termes, la résilience de l'océan face aux changements planétaires (comme l’augmentation de la température et l’acidification) dépendra de la façon dont ce réseau réagit à ces perturbations.
En raison de sa courte durée de vie, ce pool de COD labile est difficilement observable. Ces métabolites microbiens constituent pourtant les voies les plus importantes dans l'océan du transport du carbone et sont assimilés par les bactéries marines comme sources de carbone et d’énergie. La connaissance des principales voies métaboliques (des gènes aux métabolites) est donc nécessaire pour modéliser les flux de carbone dans les océans. Pourtant, la diversité de ces molécules reste largement inexplorée et nombre d’entre elles n'ont pas de voies biosynthétique et/ou catabolique annotées. C’est le cas de l'homarine (N-méthylpicolinate), un composé abondant dans les océans. La teneur en homarine peut atteindre 400 mM chez la cyanobactérie marine Synechococchus (2) et cet organisme ubiquitaire contribue entre 10 et 20 % de la production primaire nette mondiale (3). L’homarine, par son abondance, est probablement un métabolite important dans le cycle du carbone.
Projet :
Dans ce projet de thèse, nous voulons élucider la voie de dégradation de l’homarine dans les océans.
Ruegeria pomeroyi DSS-3 est une bactérie aérobie à Gram négatif, membre du clade marin Roseobacter. Ses proches parents représentent environ 10-20 % du plancton bactérien de la couche mixte côtière et océanique (4). En laboratoire DSS-3 peut utiliser l'homarine comme seule source de carbone, mais on ne dispose à ce jour d’aucune information sur les gènes et les catabolites impliqués dans ce processus.
L'analyse comparative d’expériences de RNAseq menées sur des cultures de DSS-3 cultivées avec de l'homarine ou du glucose (contrôle)comme source de carbone permettra de repérer les gènes candidats impliqués dans la voie de dégradation. En parallèle, cette voie sera étudiée via une approche métabolomique par chromatographie liquide couplée à la spectrométrie de masse à très haute résolution. La différence de profil entre des métabolomes de DSS-3 provenant de cellules cultivées sur glucose comme source de carbone et ceux issus de cellules cultivées sur homarine aidera à détecter les catabolites de la voie. Enfin, les gènes candidats seront clonés pour une expression recombinante dans E. coli, les protéines correspondantes purifiées et leur activité caractérisée afin de reconstruire l'ensemble de la voie de dégradation de l'homarine in vitro.
L’analyse de l’expression de ces gènes dans les données du projet Tara Océans (5) sera la première étape pour mieux comprendre le rôle
de l'homarine dans le cycle du carbone.
Références :
(1) doi.org/10.1038/358741a0
(2) doi.org/10.1128/mSystems.01334-20
(3) doi.org/10.1073/pnas.1307701110
(4) doi.10.1038/nature03170
(5) https://fondationtaraocean.org/expedition/tara-oceans/
Dynamique de mouillage à l'échelle nanométrique
Le mouillage dynamique décrit les processus mis en jeu lorsqu’un liquide recouvre une surface solide. C’est un phénomène qui est omniprésent dans la nature, par exemple lorsque de la rosée perle sur une feuille, ainsi que dans de nombreux procédés d’intérêt industriel, depuis l’étalement d’une peinture sur un mur jusqu’à l’élaboration de procédés de revêtement de haute performance en nanotechnologie. Il est aujourd’hui relativement bien compris dans le cas de surfaces solides modèles parfaitement lisses et homogènes, mais pas dans le cas de surfaces réelles qui présentent des rugosités et/ou des hétérogénéités chimiques, pour lesquelles une modélisation fine des mécanismes reste un défi majeur. L’objectif principal de cette thèse est de comprendre comment la rugosité nanométrique influence la dynamique du mouillage.
Ce projet repose sur une approche interdisciplinaire combinant physique et chimie des surfaces. Le (La) doctorant(e) mènera des expériences modèles systématiques, associées à des outils de visualisation et de caractérisation multi-échelles (microscopie optique, AFM, réflectivité de rayons-X et neutrons…).
Grâce à la complémentarité des approches expérimentales, cette thèse permettra de mieux comprendre les mécanismes fondamentaux de dissipation d’énergie à la ligne de contact, depuis l’échelle nanométrique jusqu’à l’échelle millimétrique
Comprendre les signaux émis par les liquides en mouvement
L’élasticité est une des plus anciennes propriétés physiques de la matière condensée. Elle s’exprime par une constante G de proportionnalité entre la contrainte appliquée (s) et la déformation (?) : s = G.? (loi de Hooke). L'absence de résistance à une déformation en cisaillement (G’ = 0) indique un comportement de type liquide (modèle de Maxwell). Longtemps considérée comme propre aux solides, une élasticité a été récemment identifiée dans les liquides à l’échelle submillimétrique [1].
L’identification d’élasticité de cisaillement (G’ non nul) à petit échelle est une promesse de découvertes de nouvelles propriétés solides des liquides. Ainsi, nous explorerons la réponse thermique des liquides [2,3], exploiterons la capacité de conversion de l’énergie mécanique en variations de température et élaborerons une nouvelle génération d’outils micro-hydrodynamiques.
A l’échelle nanoscopique, nous étudierons l’influence de la surface en contact avec le liquide (solide/liquide, liquide/liquide). Il sera question d’étudier par des méthodes uniques comme la diffusion inélastique neutrons et rayonnement Synchrotron, la dynamique de l’interface solide-liquide en utilisant de Très Grandes Installations de Recherche comme l’ILL ou l’ESRF, ainsi que par microscopie (AFM). Enfin, nous renforcerons nos collaborations avec les théoriciens, notamment avec K. Trachenko du Queen Mary Institute « Top 10 Physics World Breakthrough » et A. Zaccone de l’Université de Milan.
Ce sujet est en relation à des applications liées au mouillage, aux effets thermiques et au transport du liquide à petite échelle
De la combustion à l’astrophysique : simulations exaflopiques des écoulements fluides/particules
Cette thèse se concentre sur le développement de méthodes numériques avancées pour simuler les interactions entre fluides et particules dans des environnements complexes. Ces méthodes, initialement utilisées dans des applications industrielles comme la combustion et les écoulements multiphasiques, seront améliorées pour permettre une utilisation dans des codes de simulation pour supercalculateur exaflopique et adaptées aux besoins de l'astrophysique. L'objectif est de permettre l'étude des phénomènes astrophysiques tels que : la dynamique des poussières dans les disques protoplanétaires et la structuration de la poussière dans les proto-étoiles et le milieu interstellaire. Les résultats attendus incluent une meilleure compréhension des mécanismes de formation planétaire et de structuration des disques, ainsi que des avancées dans les méthodes numériques qui seront bénéfiques pour les sciences industrielles et astrophysiques.
Mesure de la réponse intra-pixel de détecteur infrarouge à base de HgCdTe avec des rayons X pour l’astrophysique
Dans le domaine de l'astrophysique infrarouge, les capteurs de photons les plus utilisés sont des matrices de détecteur basées sur le matériau absorbant HgCdTe. La fabrication de tels détecteurs est une expertise mondialement reconnue du CEA/Leti à Grenoble. Quant au département d'astrophysique (DAp) du CEA/IRFU, il possède une expertise reconnue dans la caractérisation de ce type de détecteurs. Une caractéristique majeure est la réponse spatiale du pixel (RSP), elle caractérise la réponse d'un pixel élémentaire de la matrice à la génération ponctuelle de porteurs au sein du matériau absorbant à divers endroits dans le pixel. Aujourd’hui cette caractéristique des détecteurs devient un paramètre clef des performances instruments, elle est critique lorsqu’il s’agit par exemple de mesurer la déformation de galaxie, ou de faire de l’astrométrie de précision. Il existe différentes méthodes existent pour mesurer cette grandeur (projection de sources lumineuses ponctuelles, méthodes interférentielles). Ces méthodes sont complexes à mettre en œuvre, notamment aux températures cryogéniques de fonctionnement des détecteurs.
Au DAp, nous proposons une nouvelle méthode, basée sur l’utilisation de photons X pour mesurer la RSP de détecteur infrarouge : en interagissant avec le matériau HgCdTe, le photon X va générer des porteurs localement. Ces porteurs vont diffuser avant d’être collectés. L’objectif est ensuite de remonter à la RSP en analysant les images obtenues. Nous suggérons une approche à deux volets, intégrant à la fois des méthodes expérimentales et des simulations. Des méthodes d’analyse de données seront aussi développées. Ainsi, l’objectif final de cette thèse est de développer une nouvelle méthode, robuste, élégante et rapide de mesure de la réponse intra-pixel de détecteur infrarouge pour l’instrumentation spatiale. L’étudiant.e sera basé au DAp. Ce travail implique également le CEA/Leti, combinant l'expertise instrumentale du DAp avec les connaissances technologiques du CEA/Leti.
Développement et caractérisation d'une ligne de lumière stabilisée à 13,5 nanomètres portant un moment angulaire orbital
La gamme d'énergie de photons de l'extrême ultraviolet (EUV, 10-100 nm) est cruciale pour de nombreuses applications allant de la physique fondamentale (attophysique, femto-magnétisme) aux domaines appliqués telles que la lithographie et la microscopie à l'échelle du nanomètre. Cependant, il n'existe pas de source naturelle de lumière dans ce domaine spectral sur Terre, car les photons sont fortement absorbés par la matière, ce qui nécessite un environnement sous vide. Il faut donc s'en remettre à des sources coûteuses, telles que les synchrotrons, les lasers à électrons libres ou les plasmas générés par des lasers intenses. La génération d'harmoniques laser d'ordre élevé (HHG), découverte il y a 30 ans et récompensée par le prix Nobel de physique en 2023, est une alternative prometteuse en tant que source de rayonnement EUV à l'échelle du laboratoire. Basée sur une interaction fortement non linéaire entre un laser de très courte durée et un gaz atomique, elle permet l'émission d'impulsions EUV d'une durée allant de la femtoseconde à l'attoseconde, avec des propriétés de cohérence très élevées et des flux relativement importants. Malgré des recherches intensives qui ont permis de comprendre clairement le phénomène, son utilisation a jusqu'à présent été essentiellement circonscrite aux laboratoires. Pour combler le fossé qui nous sépare des applications industrielles, il faut accroître la fiabilité de ces lignes de lumière, soumises à d'importantes fluctuations en raison de la forte non-linéarité du mécanisme, et développer des outils pour mesurer et contrôler leurs propriétés.
Le CEA/LIDYL et la PME Imagine Optic ont récemment réuni leur expertise dans un laboratoire commun afin de développer une ligne de faisceau EUV stable dédiée à la métrologie et aux capteurs EUV. Le laboratoire NanoLite, hébergé au CEA/LIDYL, est basé sur une ligne de faisceau HHG compacte à haut taux de répétition fournissant des photons EUV autour de 40eV. Plusieurs capteurs de front d'onde EUV ont été étalonnés avec succès au cours des dernières années. Cependant, de nouveaux besoins sont apparus récemment, entraînant la nécessité de moderniser la ligne de faisceau.
Le premier objectif du doctorant sera d'installer une nouvelle géométrie HHG sur la ligne de faisceau afin d'améliorer sa stabilité et son efficacité globales et d'augmenter l'énergie des photons à 92eV, une cible en or pour la lithographie. Il mettra ensuite en œuvre la génération d'un faisceau EUV porteur d'un moment angulaire orbital et améliorera le détecteur d'Imagine Optic pour caractériser son contenu en OAM. Enfin, avec l'aide des ingénieurs d'Imagine Optic, il développera une nouvelle fonctionnalité pour leurs capteurs de front d'onde afin de permettre la caractérisation de grands faisceaux.
Caractérisation avancée des domaines ferroélectriques dans les couches minces à base de HfO2
Ferroelectric random access memories (FeRAM) based on hafnium zirconium oxide (HZO) are intrinsically ultra-low power thanks to the voltage switching mechanism, the scaling potential of HZO to below 10 nm and full CMOS compatibility. In addition, they demonstrate low latency necessary for a wide variety of edge logic and memory applications. Understanding the underlying mechanisms and kinetics of ferroelectric domains switching is essential for intelligent FeRAM design and optimal performance.
This thesis focuses on the comprehensive characterization of ferroelectric (FE) domains in ultra-thin HZO films. The student will use several surface imaging techniques (piezoelectric force microscopy, PFM, low energy electron microscopy, LEEM, and x-ray photoemission electron microscopy, PEEM) combined with advanced operando characterization methods (time-resolved detection coupled with synchrotron radiation) for this purpose. This project will mark an important progress on the fundamental research on the polarization switching mechanisms of ultra-thin hafnia-based FE layer, elucidating the specific effects of the metal electrode/FE layer interface in the electrostatic behaviour of the studied capacitors. It will ultimately allow a significant breakthrough on the industrial development of ferroelectric emerging memories, essential for large-scale artificial intelligence (AI) applications.
Premières observations du ciel gamma au TeV avec la caméra NectarCAM pour l’observatoire CTA
L’astronomie des très hautes énergies est une partie de l’astronomie relativement récente (30 ans) qui s’intéresse au ciel au-dessus de 50 GeV. Après les succès du réseau H.E.S.S. dans les années 2000, un observatoire international, le Cherenkov Telescope Array (CTA) devrait entrer en fonctionnement à l’horizon 2026. Cet observatoire comportera une cinquantaine de télescopes au total, répartis sur deux sites. L’IRFU est impliqué dans la construction de la NectarCAM, une caméra destinée à équiper les télescopes « moyens » (MST) de CTA. Le premier exemplaire de cette caméra (sur les neuf prévues) est en cours d’intégration à l’IRFU et sera envoyé sur site en 2025. Une fois la caméra installée, les premières observations du ciel pourront avoir lieu, permettant de valider entièrement le fonctionnement de la caméra. La thèse vise à finaliser les tests en chambre noire à l’IRFU, préparer l’installation et valider le fonctionnement de la caméra sur le site de CTA. Elle vise également à effectuer les premières observations astronomiques avec ce nouvel instrument. Il est également prévu de participer à l’analyse des données de la collaboration H.E.S.S., sur des sujets d’astroparticules (recherche de trous noirs primordiaux, contraintes sur l’Invariance de Lorentz à l’aide d’AGN lointains).
Influence de la densité d'ionisation dans l'eau sur des solutés fluorescents. Application à la Détection de rayonnements alpha
La localisation et l’identification rapide, à distance, des sources d’émission de particules alpha et beta sur les surfaces ou des cavités humides ou dans des solutions, dans des installations nucléaires en démantèlement, ou à assainir, est un véritable enjeu.
Le projet de thèse proposé vise à développer un concept de détection à distance d'une lumière de fluorescence issue de processus de radiolyse de l'eau sur des molécules ou des nano-agents. La caractérisation temporelle par des mesures de durées de vie de fluorescence permettra d’attribuer la détection à un type de rayonnement, dépendant de son transfert d'énergie linéique (TEL). Dans le pic de Bragg des rayonnements alpha où le TEL est maximal, la densité d'ionisation due à ce TEL influence la durée de vie de fluorescence. Cependant, des effets de débits de dose seront aussi à considérer.
Des molécules et nanoparticules candidates à former des produits fluorescents et sensibles à la densité d’ionisation et de radicaux produits dans les traces à temps très courts, seront identifiées par un travail guidé de bibliographie, puis testées et comparées par des mesures. Les mesures spectrales (absorption et fluorescence) et des durées de vie de fluorescence des espèces fluorescentes correspondantes seront réalisées en utilisant la méthode TCSPC (Time Corelated Single Photon Counting) multicanale (16 canaux). Des faisceaux d'ions ou des particules alpha provenant de sources scellées seront utilisés pour faire une preuve de concept dans le cadre du programme CEA assainissement/démantèlement.