Nanotubes d'aluminosilicate fonctionnalisés pour la photocatalyse
L'augmentation de la demande en énergie et la nécessité de réduire l’utilisation des combustibles fossiles afin de limiter le réchauffement climatique ont ouvert la voie à un besoin urgent de technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifiques élevées et accessibles, environnements confinés, transport d'électrons sur de longues distances et séparation des charges facilitées) L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Sa particularité ne vient pas de composition chimique (Al, O et Si) mais de sa courbure intrinsèque qui induit une polarisation permanente de la paroi séparant efficacement les charges photo-induites. Plusieurs modifications de ces matériaux sont possibles (couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet de moduler leurs propriétés. Nous avons fait la preuve de concept que cette argile est un nanoréacteur pour des réactions photocatalytiques (production de H2 et réduction du CO2) sous illumination UV. Afin d'obtenir un photocatalyseur utile, il est nécessaire d'étendre la collecte des photons dans le domaine du visible. Une stratégie envisagée consiste à encapsuler et à greffer de façon covalente des colorants servant d'antenne dans la cavité. L'objectif de cette thèse consiste à synthétiser des imogolites avec différentes fonctionnalisations internes, à étudier l'encapsulation et le greffage de colorants dans la cavité de ces imogolites fonctionnalisées et enfin à étudier les propriétés photocatylitques.
Réactions nucléaires induites par des anti-ions légers – apport du modèle INCL
L’interaction d’une antiparticule avec un noyau atomique est un type de réaction qu’il faut savoir simuler pour pouvoir répondre à des questions fondamentales. On peut citer comme exemples, la collaboration PANDA (FAIR) avec des faisceaux d’antiproton de l’ordre du GeV qui envisage l’étude des interactions nucléon-hypéron, ainsi que celle de la peau de neutron, par la production d’hypérons et d’antihypérons. Cette même peau de neutron est aussi étudiée avec des antiprotons au repos avec l’expérience PUMA (AD - Cern). Au même endroit nous collaborons avec l’expérience ASACUSA pour l’étude de la production des particules chargées. Pour répondre à ces études, notre code de réactions nucléaires INCL a été étendu aux antiprotons (thèse D. Zharenov soutenue fin 2023). Au-delà de l’antiproton il y a les antideutérons et antiHe-3. Ces antiparticules sont d’un intérêt plus récent, avec notamment l'expérience GAPS (General AntiParticle Spectrometer) qui vise à mesurer les flux de ces particules dans le rayonnement cosmique. L’idée est de mettre en évidence la matière noire, dont ces particules seraient des produits de décroissance, et dont la quantité mesurée doit ressortir plus facilement du bruit de fond astrophysique que dans le cas des antiprotons. Le sujet proposé est donc l’implantation des anti-noyaux légers dans INCL avec comparaisons à des données expérimentales.
Chimie de déséquilibre des atmosphères d'exoplanètes à haute métallicité à l'époque du JWST
En un peu plus de deux ans d'exploitation scientifique, le JWST a révolutionné notre compréhension des exoplanètes et de leurs atmosphères. La mission spatiale ARIEL, qui sera lancée en 2029, contribuera bientôt à cette révolution. L'une des principales découvertes rendues possibles par la qualité exceptionnelle des données du JWST est que les atmosphères des exoplanètes sont en déséquilibre chimique. Un traitement complet du déséquilibre est complexe, en particulier lorsque les atmosphères sont riches en métaux, c'est-à-dire lorsqu'elles contiennent en abondance significative des éléments autres que l'hydrogène et l'hélium. Dans un premier temps, notre projet étudiera numériquement l'étendue du déséquilibre chimique dans les atmosphères des cibles du JWST suspectées d'avoir des atmosphères riches en métaux. Nous utiliserons à cette fin un modèle photochimique interne. Dans un deuxième temps, notre projet explorera l'effet de la chimie super-thermique comme moteur du déséquilibre chimique. Cela permettra d'obtenir des informations inédites sur la chimie des atmosphères riches en métaux, avec le potentiel de jeter un nouvel éclairage sur les trajectoires chimiques et évolutives des exoplanètes de faible masse.
Etude des sursauts gamma cosmiques détectes par la mission SVOM
Les sursauts gamma cosmiques (GRBs) sont des bref (0.1-100 s) éclairs de photons gamma qui apparaissent de façon imprévisible sur toute la voûte céleste. Bien que découverts à la fin des années 1960, ils sont restés mystérieux jusqu'à la fin des années 1990 à cause de leur nature furtive. Ce n'est que grâce aux observations du satellite BepppSAX à la fin des années 1990 et surtout à celles du satellite Swift à partir des années 2000, que le mystère de la nature de ces sources à pu être percé.
En fait il s'agit d'émissions liées d'une part aux phases finales d'une étoile très massive (30-50 fois la masse su Soleil) pour les sursaut longs (>2 s) et de l'autre à la coalescence de deux objets compacts (typiquement deux étoiles à neutrons) pour les sursauts courts (< 2s). Dans tous les cas il y a création d'un jet de matière relativiste qui est à l'origine de l'émission gamma et dans les autres bandes d'énergie. Si ce puissant jet est pointé vers la terre on peut observer les sursauts gamma jusqu'à des distances très élevées (z~9.1) ce qui correspond à un age très jeune de notre Univers (~500 Myr).
SVOM est une mission satellitaire franco-chinoise dédiée à l'etude des sursauts gamma, qui a été lancée avec succès le 22 juin 2024 et dans laquelle le CEA/Irfu/DAp est fortement impliqué. Le sujet de thèse se propose d'exploiter les données multi-longueur d'onde de la charge utile de SVOM et des télescopes partenaires pour mieux étudier la nature des sursauts gamma et en particulier d'utiliser les données du telescope à rayons X MXT, pour mieux contraindre la nature de l'objet compact qui est la source des jets relativistes, qui sont à l'origine des émissions observées.
Calcul quantique avec des spins nucléaires
Les spins nucléaires dans les solides font partie des systèmes quantiques ayant les temps de cohérence les plus longs, jusqu'à des minutes, voire des heures, et sont donc des candidats attrayants pour les qubits ; cependant, le contrôle et la lecture des spins nucléaires individuels sont très difficiles. Dans notre laboratoire, nous avons mis au point une nouvelle méthode pour y parvenir. Les qubits de spin nucléaire sont interfacés par un ancilla de spin électronique, auquel ils sont couplés par l'interaction hyperfine. Le spin électronique est ensuite mesuré par comptage de photons à micro-ondes à des températures de l'ordre du millikelvin [1,2]. La lecture d'un seul cliché de spin nucléaire est effectuée par le biais du spin électronique [3], et le contrôle cohérent est obtenu par l'utilisation de transitions Raman micro-ondes [4]. Les spins électroniques sont des ions Er3+ dans un cristal CaWO4, et les spins nucléaires sont des atomes 183W dans la matrice, qui ont un spin 1/2.
[1] E. Albertinale et al., Nature 600, 434 (2021)
[2] Z. Wang et al., Nature 619, 276 (2023)
[3] J. Travesedo et al., arxiv (2024)
[4] J. O'Sullivan et al., arxiv (2024)
Élucider le mécanisme de la fixation enzymatique du carbone
Le groupe Synchrotron de l'Institut de Biologie Structurale de Grenoble développe actuellement une méthode innovante appelée TR-FOX (Time-Resolved Functional Oscillation Crystallography). Cette technique vise à élucider, d’une part, la dynamique globale des macromolécules biologiques en fonctionnement, et d’autre part, les détails de leur mécanisme catalytique. Elle repose sur l’utilisation d’un injecteur capable de déposer sur l’échantillon cristallin, durant l'enregistrement des données de diffraction, une gouttelette de quelques nanolitres contenant les substrat et cofacteur de la réaction étudiée. Cela déclenche ainsi une réaction enzymatique au sein du cristal. Cette approche peut être couplée à la spectroscopie d'absorption UV-Visible pour caractériser plus précisément la cinétique de la réaction. L'objectif est d'obtenir une série de structures représentant différents états du cycle catalytique, permettant ainsi la réalisation d’un film moléculaire du fonctionnement de l’enzyme. Cette thèse poursuit un double objectif : (i) Améliorer et valider la méthode TR-FOX, (ii) Élucider le mécanisme catalytique de deux enzymes impliquées dans la fixation du carbone soit par capture soit par conversion du CO2.
Disques Magnétiques comme Transducteurs de Moment Angulaire
Le sujet proposé est un projet collaboratif visant à exploiter les disques magnétiques suspendus en tant que nouveaux transducteurs micro-ondes du moment angulaire orbital. Notre objectif est de développer des modulateurs opto-mécaniques ultra-fidèles fonctionnant à des fréquences de l'ordre du GHz en intégrant des matériaux magnétiques dans des composants optiques. Ce concept innovant découle des progrès récents dans l'étude des lois de conservation du moment angulaire des modes magnétiques dans les cavités axi-symétriques. La conception que nous proposons permet de réaliser une interconversion cohérente entre la gamme de fréquences des micro-ondes dans laquelle fonctionnent les réseaux sans fil ou les ordinateurs quantiques et celle des réseaux optiques, qui constitue la gamme de fréquences optimale pour les communications à longue distance. À cet égard, notre proposition ne se contente pas d’introduire de nouvelles applications de la magnonique dans le domaine de l'optique qui n'avaient pas été envisagées auparavant, mais elle jette également un pont entre la communauté spintronique et ceux des communautés électronique et quantique.
Les déformations élastiques sont générées ici par la dynamique de l'aimantation à travers le tenseur magnéto-élastique et son couplage sans contact à un circuit micro-ondes. Notre étude se concentrera sur des structures microniques en grenat magnétique monocristallin intégrées dans des guides d'ondes ou des cavités photoniques en GaAs. En outre, nous proposons la fabrication de structures suspendues afin de minimiser les pertes d'énergie (élastiques ou optiques) à travers le substrat.
Le premier défi est de produire des hétérostructures hybrides intégrant des films de grenat de haute qualité avec des semi-conducteurs. Nous proposons une approche nouvelle basée sur l’élaboration de films de grenat magnétique d'épaisseur micronique, obtenus par épitaxie en phase liquide (LPE) sur un substrat de gadolinium-gallium-grenat (GGG). L'originalité consiste à coller le film retourné sur une tranche de semi-conducteur, puis à polir mécaniquement le substrat de GGG. La multicouche obtenue sera ultérieurement gravée par des techniques de lithographie standard.
Le deuxième défi est d'aller au-delà de l'excitation des modes uniformes et de cibler les modes avec un moment angulaire orbital en tant qu'encodeurs de quanta arbitrairement grands de nJ? pour des communication multiplexés multi-canaux ou pour définir des registres d'états quantiques multi-niveaux. On tirera parti des avancées récentes dans le couplage spin-orbite entre les ondes de spin azimutales ainsi que dans la diffusion élastique des magnons sur les tenseurs magnéto-cristallins anisotropes. Dans ce projet, nous voulons également aller au-delà de l'état uniformément aimanté et exploiter la capacité de modifier de façon continue la texture magnétique d'équilibre dans la direction azimutale comme moyen d'ingénierie des règles de sélection et donc accéder de manière cohérente à des symétries de modes qui seraient autrement cachées.
Exploration de nanomatériaux à base de diamant pour la (sono)photocatalyse : Applications pour la production d'hydrogène et la réduction du CO2
Les nanodiamants (ND) sont de plus en plus étudiés comme semiconducteurs pour la photocatalyse, notamment grâce aux positions très spécifiques de leurs bandes de valence et de conduction qui peuvent être modulées. Ainsi, il a été récemment démontré que les ND peuvent produire de l’hydrogène sous lumière solaire avec une efficacité similaire à celle des nanoparticules de TiO2. D'autres études montrent également la possibilité de photogénérer des électrons solvatés à partir de certains NDs pour la réduction du CO2 ou la dégradation de polluants tenaces.
Dans l’optique d’accélérer le développement des technologies "solar-to-X" à base de nanodiamants, nous proposons dans le cadre de cette thèse d’intégrer ces derniers en tant que photocatalyseurs dans une approche sonophotocatalytique. En effet, la cavitation acoustique, générée par les ultrasons, peut améliorer le transfert de masse en dispersant les particules catalytiques et permet de produire des espèces réactives additionnelles (radicaux hydroxyles, superoxydes). Elle émet également une sonoluminescence qui peut favoriser la photogénération de charges et devrait limiter la recombinaison des porteurs de charge.
La première phase du travail portera sur la synthèse de photocatalyseurs à base de nanodiamants, en explorant diverses chimies de surface et leur association avec des co-catalyseurs. Des méthodes de synthèse classique et sonochimique seront utilisées, des études préliminaires ayant montré que la sonochimie peut modifier efficacement la chimie de surface des ND. Les propriétés photocatalytiques de ces matériaux seront d'abord évaluées, menant ensuite à la conception d'une cellule sonophotocatalytique . Des études approfondies exploreront les synergies entre sonochimie et photocatalyse pour la production d’hydrogène ou la réduction du CO2. Ce travail de thèse se déroulera dans le cadre d'une collaboration entre le NIMBE situé sur le centre CEA de Saclay et l'ICSM situé sur le centre CEA de Marcoule.
Saumures pour le recyclage des métaux
Les métaux critiques sont essentiels pour différentes technologies indispensables pour réduire nos émissions de dioxyde de carbone. Cependant, le recyclage des métaux contenus dans les déchets électroniques est inférieur à 20 % au niveau mondial, ce gisement de métaux est donc encore sous-exploité. Il est de plus urgent de développer des procédés efficaces pour recycler des déchets comme les panneaux solaires, dont le volume de déchets générés va devenir très important dans les années à venir. Actuellement, les méthodes hydrométallurgiques classiques utilisent des solutions aqueuses souvent toxiques pour dissoudre les métaux, ce qui pose des défis environnementaux conséquents.
Ce projet propose une alternative innovante en utilisant des saumures concentrées (solutions aqueuses de sels), pour oxyder et dissoudre les métaux. Dans ce sujet de thèse, les propriétés fondamentales des saumures et leur capacité à dissoudre des métaux seront étudiées avec différentes méthodes, notamment électrochimiques. Les méthodes d'intelligence artificielle développées au laboratoire seront utilisées pour cribler de nombreuses saumures capables d'améliorer la dissolution de métaux. Dans un second temps, des procédés de recyclage basés sur les saumures seront développés pour recycler les métaux contenus dans les circuits imprimés et les panneaux solaires. Enfin, la séparation des métaux et le traitement des saumures usées sera étudié avec des procédés membranaires et électrochimiques.
Recherche de la production par paire de bosons de Higgs dans le canal multilepton à 13.6 TeV avec le détecteur ATLAS
Le boson de Higgs, découvert en 2012 au LHC, est à l’origine de la brisure de symétrie électrofaible au sein du Modèle Standard (MS). Malgré des études approfondies de ses propriétés, l'auto-couplage du boson de Higgs reste inexploré. Ce paramètre est essentiel pour déterminer le potentiel de Higgs et la stabilité du vide de l'univers. L’étude de la production par paires de boson de Higgs est la seule méthode directe pour mesurer cet auto-couplage, et ainsi fournir des informations cruciales sur la structure fondamentale de l'univers et la nature de la transition de phase électrofaible après le Big Bang. La production de di-Higgs a une section efficace très faible dans le MS. Parmi les canaux de détection possibles, l'état final avec plusieurs leptons est prometteur en raison de sa signature cinématique unique. Cependant ce canal est complexe à analyser en raison de la nécessité d'une identification précise des leptons et de techniques avancées de séparation de signal utilisant l’apprentissage automatique. Ce projet de thèse consiste à rechercher la production de di-Higgs dans le canal multilepton avec les données de l’expérience ATLAS à 13.6 TeV, profitant du grand lot de données enregistrées et de l’augmentation en énergie du Run 3 du LHC, avec pour objectif d’atteindre la sensibilité du MS.