Analyse spectro-temporelle de l'émission rémanente des sursaut gamma cosmiques détectés avec SVOM
Les sursauts gamma cosmiques (Gamma-Ray Bursts, GRBs) sont les explosions les plus puissantes de l'Univers. Ils durent quelques dizaines de secondes et émettent autant d'énergie que le Soleil pendant toute sa durée de vie. Leur émission en rayons gamma est suivie d'une émission de longue durée (de quelques heures à plusieurs jours) allant des rayons X à la bande radio. Cette émission « rémanente » est riche en informations sur l'environnement proche du GRB et sur la galaxie hôte. SVOM (Space based astronomical Variable Object Monitor) est une mission sino-française dédiée à l'étude des GRB, qui a été lancée avec succès en juin 2024. Elle embarque une charge utile multi-longueurs d'onde couvrant les rayons gamma/rayons X/optiques et comprend deux télescopes robotiques terrestres dédiés au Mexique et en Chine.
Le projet de doctorat est axé sur l'exploitation des données SVOM pour les GRB. Le candidat retenu rejoindra l'équipe scientifique MXT au DAp. MXT est un nouveau type de télescope à rayons X, dont le DAp est responsable et dont le centre d'instrumentation est également hébergé au DAp.
Le doctorant participera activement à l'analyse spectrale et temporelle des données MXT. Ces données seront comparées
aux autres données acquises par la collaboration SVOM, en particulier dans les domaines optique et infrarouge.
Cet ensemble de données sera utilisé comme support à l'interprétation physique des sursauts gamma. Plus précisément, les aspects liés à la modélisation de l'injection d'énergie dans les premières phases de la rémanence seront utilisés pour déterminer la nature de l'objet compact à l'origine du flux relativiste, générant l'émission électromagnétique observée.
Forme exotique du noyau : spectroscopie d'actinides déficients en neutrons avec le détecteur SEASON
La question de la limite de stabilité des noyaux, tant en terme d'asymétrie protons/neutrons qu'en terme de masse, est une question importante de la physique nucléaire moderne. Dans la région des noyaux lourds, les actinides déficients en neutrons présentent un intérêt particulier. En effet, de fortes déformations octupolaires, donnant au noyau une forme de poire, sont prédites et ont même été déjà observées dans certains noyaux. Ces déformations semblent jouer un rôle important sur la stabilité des noyaux, sur les modes de désintégration accessibles, voire sur des effets liés à la physique au-delà du modèle standard. L'objectif de cette thèse est de continuer l'étude systématique de ces déformations en mettant à profit le tout nouveau détecteur SEASON, dont la première expérience aura lieu en février 2026 à l'université de Jyväskylä en Finlande. La thèse sera principalement centrée sur l'analyse des données d'une expérience qui fera partie de la campagne réalisée à l'été 2026 à Jyväskylä. Plusieurs expériences sont envisagées en utilisant des réactions de fusion-évaporation avec différents couples faisceau/cible. Les actinides ainsi produits seront envoyés dans le détecteur SEASON où leur spectroscopie de décroissance aura lieu. En fonction de l'évolution des plannings, une autre campagne de mesures pourra être envisagée au cours de l'année 2027. Le retour de l'instrument en France pour être installé auprès du spectromètre S3 à GANIL (Caen) pourrait également avoir lieu au cours de la thèse.
La thèse pourra être codirigée avec l'Université de Jyväskylä.
TRANSFORMER : de la généalogie des halos de matière noire aux propriétés baryoniques des amas de galaxies.
La thèse propose de prédire les propriétés baryoniques des amas de galaxies en fonction de l'historique de la formation des halos de matière noire, au moyen de réseaux de neurones novateurs (Transformers). Le travail fera appel à des simulations numériques intensives. Ce projet se situe dans le cadre général de la détermination des paramètres cosmologiques par l'observation des amas de galaxies en rayons X. Il est en lien direct avec le programme international Heritage dans le champ profond XMM-Euclid FornaX.
Développement d’algorithmes de trajectographie basés sur l’apprentissage automatique pour le détecteur Upstream Pixel de LHCb au LHC
Cette thèse vise à développer et optimiser les futures performances de trajectographie de l’expérience LHCb au Grand collisionneur de hadrons (LHC) grâce à l’exploration d’algorithmes avancés d’apprentissage automatique. Le nouveau sous-détecteur Upstream Pixel (UP), situé avant le champ magnétique, jouera un rôle central à partir du Run 5 pour réduire précocement le taux de fausses traces et améliorer la reconstruction rapide des trajectoires dans des environnements à forte multiplicité.
Afin de mener avec succès les programmes de physique ambitieux de LHCb — étude des désintégrations rares, violation de CP dans le Modèle Standard, caractérisation du plasma de quarks et de gluons dans les collisions d’ions lourds — une trajectographie rapide et extrêmement précise est indispensable. Cependant, l’augmentation des taux de données et de la complexité des événements attendue pour les futures prises de données impose de dépasser les méthodes classiques, en particulier dans les collisions noyau-noyau où des milliers de particules chargées sont produites simultanément.
Dans ce contexte, nous étudierons une gamme de techniques modernes d’apprentissage automatique, dont certaines ont déjà fait leurs preuves pour la trajectographie dans le détecteur VELO de LHCb. En particulier, les Réseaux de Neurones à Graphes (Graph Neural Networks, GNN) constituent une solution prometteuse permettant d’exploiter les corrélations géométriques entre impacts pour améliorer l’efficacité de reconstruction tout en réduisant les faux positifs.
Le travail de thèse comprendra dans un premier temps le développement d’une simulation GEANT4 réaliste du détecteur UP afin de produire des jeux de données adaptés à l’apprentissage machine. Dans un second temps, les modèles les plus performants seront optimisés pour une exécution en temps réel sur GPU, en accord avec l’évolution du système de reconstruction Allen de LHCb. Ils seront ensuite intégrés et validés dans le framework logiciel de l’expérience, avec à la clé une contribution majeure à la performance de LHCb pour le Run 5 et les phases ultérieures du programme expérimental.
Etude numérique de la turbulence interstellaire à l'heure de l'exascale
Ce projet de thèse vise à mieux comprendre la turbulence du milieu interstellaire, un phénomène clé pour la formation des étoiles et des structures galactiques. Cette turbulence, à la fois magnétisée, supersonique et multiphasique, influence la manière dont l’énergie se propage et se dissipe, régulant ainsi l’efficacité de la formation stellaire à travers l’histoire de l’Univers. Son étude est complexe car elle implique une vaste gamme d’échelles spatiales et temporelles, difficile à reproduire numériquement. Les progrès du calcul haute performance, notamment l’arrivée des supercalculateurs exascale à GPU permet désormais d’envisager des simulations beaucoup plus fines.
Le code Dyablo, développé à l’IRFU, sera utilisé pour réaliser des simulations tridimensionnelles de très grande taille, avec un maillage adaptatif pour affiner les zones de dissipation d’énergie. L’étude progressera par étapes : d’abord des écoulements simples et isothermes, puis des modèles incluant chauffage, refroidissement, champ magnétique et gravité. Les propriétés turbulentes seront analysées via spectres de puissance, fonctions de structure et distributions de densité, afin de mieux comprendre la formation des zones denses propices à la naissance des étoiles. Enfin, une extension du travail à l’échelle galactique, en collaboration avec d’autres instituts français, visera à explorer la cascade d’énergie turbulente à grande échelle dans les galaxies entières.
Découverte guidée par V-SYNTHES d’inhibiteurs des bromodomaines BET : une nouvelle stratégie antifongique cilbant Candida auris
De nouvelles stratégies antifongiques sont aujourd’hui indispensables pour lutter contre Candida auris, un « superchampignon » émergent multirésistant, à l'origine d’épidémies nosocomiales sévères et d’infections à taux de mortalité élevé. Nos études de preuve de concept réalisées sur Candida albicans et Candida glabrata ont démontré que les bromodomaines BET fongiques – des modules de liaison à la chromatine reconnaissant les histones acétylées – constituent de nouvelles cibles antifongiques prometteuses. Nous avons mis au point un ensemble d’outils moléculaires et cellulaires pour accélérer la découverte d’inhibiteurs des bromodomaines BET fongiques, comprenant des essais FRET pour le criblage de composés, des souches de Candida humanisées pour la validation de la spécificité de cible, ainsi que des tests NanoBiT permettant de suivre directement l’inhibition des bromodomaines BET dans des cellules fongiques.
Ce projet de thèse marque la prochaine étape translationnelle de notre programme de recherche. Il exploitera l’approche V-SYNTHES, une stratégie innovante de découverte et de conception de nouvelles molécules thérapeutiques guidée par l'IA, afin de développer des inhibiteurs BET hautement puissants ciblant C. auris. Ces inhibiteurs seront caractérisés par des analyses biophysiques, biochimiques et cellulaires, étudiés en co-cristallographie avec leurs bromodomaines cibles, puis validés pour leur activité spécifique dans C. auris ainsi que pour leur efficacité antifongique dans des modèles animaux d’infection. Ils serviront également à explorer les mécanismes d’émergence de la résistance aux inhibiteurs BET. Ce projet allie une stratégie antifongique originale à une approche méthodologique innovante, offrant un cadre de formation unique à la recherche interdisciplinaire et translationnelle.
Effets combinés de l’hypoxie et de la mécanique matricielle sur la physiopathologie de la fibrose pulmonaire
La fibrose pulmonaire idiopathique (FPI) est une maladie chronique, incurable et mortelle, caractérisée par une altération de la barrière alvéolo-capillaire, un dépôt excessif de matrice extracellulaire (MEC), une hypoxie locale et une rigidité accrue du tissu pulmonaire. Ces modifications perturbent les interactions cellulaires et favorisent la transition vers un état pro-fibrosant. Ce projet de thèse vise à comprendre comment l’environnement mécanique (rigidité tissulaire) et chimique (hypoxie) influence le comportement des cellules pulmonaires (plasticité, phénotype) et leurs communications intercellulaires (paracrines et juxtacrines), en conditions in vitro contrôlées. Pour cela, des supports biomimétiques à rigidité variable seront développés, adaptés à la co-culture des principaux types cellulaires de la barrière alvéolo-capillaire. L’étude portera sur la réponse cellulaire à la rigidité et à l’hypoxie, l’analyse du sécrétome, du protéome et l’impact de la communication cellulaire. L’objectif est d’identifier des facteurs pro-fibrosants mécano- et chimio-dépendants, afin de mieux comprendre les mécanismes de progression de la FPI et de proposer de nouvelles cibles thérapeutiques et approches régénératives.
Surveillance du risque de criticité par bruit neutronique dans les milieux nucléaires dégradés
Notre équipe au CEA/Irfu étudie avec l’ASNR la possibilité d’utiliser la mesure du bruit neutronique, c’est-à-dire les variations stochastiques du flux de neutrons, pour estimer la réactivité des systèmes nucléaires sous critiques. L’objectif est de proposer cette technique pour mesurer en ligne la réactivité du corium de Fukushima Daiichi lors des futures opérations de démantèlement. Le travail de la thèse portera sur l’évaluation d’une solution basée sur des détecteurs de neutrons développés par l’IRFU, de type Micromegas (les détecteurs nBLM), adaptés aux radiations gamma extrêmes attendues à proximité du corium de Fukushima Daiichi. L’étudiant(e) participera à des expériences sur des installations nucléaires de recherche en Europe et aux Etats-Unis pour tester cette solution technique et mesurer le bruit neutronique pour une large gamme de réactivités. Il/elle sera en charge de l’analyse des données et de l’évaluation des différentes méthodes d’inversion permettant d’estimer la réactivité à partir des mesures du bruit neutronique.
Mesure des excitations dipolaires de basse énergie par diffusion inélastique de neutrons
La résonance dipolaire pygmée est un mode de vibration observé dans les noyaux riches en neutrons et qui a initialement été décrit comme l'oscillation d'une peau de neutrons contre un cœur symétrique en termes de nombre de protons et de neutrons. Mais des études expérimentales ont révélé une structure plus complexe. Il y a quelques années, nous avons proposé de tirer parti du flux de neutrons à haute intensité de SPIRAL2-NFS pour étudier la résonance pygmée avec une approche originale : la diffusion inélastique de neutrons. Suite au succès de la première expérience menée en 2022, nous proposons de poursuivre notre programme dans une nouvelle région de la carte des noyaux. L'objectif de la thèse est d'étudier la résonance dipolaire pygmée dans le 88Sr par diffusion inélastique de neutrons. La thèse consistera en : i) la participation à l'expérience, ii) l'analyse des données, et iii) l'interprétation des résultats en collaboration avec des théoriciens.
Développement du détecteur Micromegas CyMBaL et étude de la saturation des gluons pour le futur Electron-Ion Collider
Le futur collisionneur Electron-Ion (EIC), qui sera construit au Brookhaven National Laboratory (NY, USA), est une installation de nouvelle génération conçue pour explorer la structure interne des protons et des noyaux avec une précision sans précédent. Il explorera comment les quarks et les gluons génèrent la masse, le spin et la structure de la matière visible, et étudiera l’augmentation de la densité de gluons à faible Bjorken-x. Pour atteindre ces ambitieux objectifs scientifiques, des détecteurs innovants sont en cours de développement, notamment le système Micromegas CyMBaL, un traceur gazeux destiné à la région centrale du premier appareil expérimental EIC, ePIC.
Ce projet de thèse combine une R&D expérimentale sur les détecteurs gazeux et des simulations physiques en couvrant les points suivants :
* Caractérisation des prototypes : construction et tests des détecteurs Micromegas à grande échelle ; mesure de l’efficacité, l’uniformité du gain et la résolution spatiale en laboratoire et en faisceau. Tests et validation des prototypes avec le nouvel ASIC SALSA, développé au CEA pour les détecteurs gazeux de l’expérience ePIC.
* Simulations du détecteur : intégrer la géométrie CyMBaL dans le framework de l’EIC et évaluer l’efficacité globale de trajectographie afin de s'assurer que les exigences de performances du détecteur sont respectées.
* Simulations de physiques : simuler des processus clés sensibles à la saturation des gluons (par ex. corrélations di-hadrons dans l’état final) afin de mieux comprendre la QCD à faible-x et d’évaluer l’impact des performances du détecteur sur la sensibilité de ces observables.
Le doctorant aura l’opportunité de participer au développement de détecteurs gazeux de pointe et de travailler au sein d’une communauté internationale de physiciens hadroniques sur des sujets à la frontière du domaine, avec des déplacements au Brookhaven National Laboratory (NY, USA) et des campagnes de tests en faisceau auprès d'accélérateurs.