De la toile cosmique aux galaxies : retracer l'accrétion de gaz à haut redshift par les observation et les simulations

Cette thèse vise à développer une compréhension intégrée des galaxies à haut redshift au sein de leurs structures à grande échelle. Nous étudierons comment les mécanismes de rétroaction (« feedback ») et l'activité nucléaire de ces galaxies affectent leur environnement, en couplant des données observationnelles avec des simulations cosmologiques.
Nos objectifs principaux sont de :
1. Faire progresser les capacités de diagnostic pour l'étude du gaz diffus.
2. Tester et valider les paradigmes actuels sur l'accrétion de gaz.
Notre travail observationnel s'appuiera sur de nouvelles données du télescope Keck et du Very Large Telescope concernant les halos Lyman-alpha autour de groupes et amas massifs à z>2, dont nous disposons déjà en grande partie. Nous intégrerons également les données de plus en plus nombreuses du télescope spatial James Webb (JWST) sur les mêmes cibles, afin de révéler les propriétés des galaxies et de leurs noyaux actifs (AGN).
Sur le plan théorique, nous utiliserons les résultats publics des simulations TNG100, HORIZON5 et CALIBRE pour comprendre l'évolution des galaxies, en tirant des enseignements des succès comme des échecs lors de la comparaison avec les observations. In fine, cela nous permettra de guider le développement de nouvelles simulations haute fidélité du milieu circum-galactique, conçues spécifiquement pour contraindre les processus d'accrétion de gaz.
Cette recherche soutient directement notre objectif à long terme de nous préparer à l'exploitation de BlueMUSE, un nouvel instrument en cours de construction pour le VLT auquel nous participons. Elle permettra également de répondre à l'une des questions ouvertes majeures en astrophysique, telle qu'identifiée par le rapport décennal Astro2020.

Méthode de réduction de dimensionalité appliquée à la théorie ab initio à N corps "coupled cluster" déformée

La description théorique des premiers principes, i.e. de manière dite ab initio, des noyaux atomiques contenant plus de 12 nucléons n’est devenue possible que récemment grâce aux développements cruciaux de la théorie à N corps et à la disponibilité d’ordinateurs hautes performances de plus en plus puissants. Ces techniques ab initio sont appliquées avec succès pour étudier la structure des noyaux, en partant des isotopes les plus légers et pour atteindre aujourd’hui tous les noyaux de masse moyenne contenant jusqu’à environ 80 nucléons. L’extension à des systèmes encore plus lourds nécessite des avancées décisives du point de vue du cout de stockage et du temps de calcul induits par les méthodes à N corps disponibles. Dans ce contexte, l’objectif de la thèse est de développer la méthode de réduction de dimensionalité fondée sur la factorisation des tenseurs mis en jeu dans le cadre de la théorie à N corps non perturbative dite de coupled cluster déformée (dCC). Le travail proposé exploitera les dernières avancées en théorie nucléaire, y compris l’utilisation des potentiels nucléaires issus de la théorie effective des champs chirale et des techniques du groupe de renormalisation, ainsi que des ressources et des codes de calcul haute performance.

L'apprentissage automatique pour l'analyse cosmologique des images de lentille gravitationnelle faible provenant du satellite Euclid

L'effet de lentille gravitationnelle faible, la distorsion des images de galaxies à haut redshift due aux structures de matière au long de la ligne de visée à grande échelle, est l'un des outils les plus prometteurs de la cosmologie pour sonder le secteur sombre de l'Univers. Le satellite spatial européen Euclide mesurera les paramètres cosmologiques avec une précision sans précédent. Pour atteindre cet objectif ambitieux, un certain nombre de sources d’erreurs systématiques doivent être quantifiées et comprises. L’une des principales origines des biais est liée à la détection des galaxies. Il existe une forte dépendance à la densité de galaxies locale et au fait que l'émission lumineuse de la galaxie chevauche les objets proches. Si elles ne sont pas traitées correctement, de telles galaxies « mélangées » (blended) biaiseront fortement toute mesure ultérieure de distorsions d'image à faible lentille.
L'objectif de cette thèse est de quanti?er et de corriger les biais de détection des lentilles faibles, notamment dus au mélange. À cette fin, des algorithmes modernes d’apprentissage automatique et profond, y compris des techniques d’auto-différenciation, seront utilisés. Ces techniques permettent une estimation très efficace de la sensibilité des biais liés aux propriétés des galaxies et des levés sans qu'il soit nécessaire de créer un grand nombre de simulations. L'étudiant effectuera des analyses d'inférence de paramètres cosmologiques des données de lentille faible d'Euclide. Les corrections des biais développées dans cette thèse seront inclutes à prior dans la mesure de formes de galaxies, où à postérior â l'aide de paramètres de nuisance, afin d'obtenir des mesures de paramètres cosmologiques avec une fiabilitlé requise pour une cosmologie de précision.

Supraconducteurs triplets : du couplage spin-orbite faible au couplage spin-orbite fort

Depuis les années 1980, plusieurs supraconducteurs non conventionnels ont été découverts, certains présentant un appariement triplet (spin total S=1) pouvant donner lieu à des propriétés topologiques intéressantes. Contrairement aux supraconducteurs singulets, leur paramètre d’ordre est un vecteur dépendant des composantes du spin (S_z=-1,0,1) et est fortement influencé par la symétrie cristalline et le couplage spin-orbite (SO).
La thèse vise à étudier la transition entre faible et fort couplage spin-orbite dans un supraconducteur triplet, en s’appuyant sur un modèle multibande minimal inspiré du matériau CdRh2As3, où une phase triplet induite par champ a été récemment observée. Cette recherche permettra de calculer la susceptibilité dynamique de spin et d’identifier d’éventuelles résonances de spin collectives, analogues à celles du superfluide He3.
Le travail reposera principalement sur des outils analytiques de théorie des champs appliqués à la matière condensée. Le projet s’adresse à des candidats ayant une solide formation en mécanique quantique, physique statistique et physique du solide.

Stimulation magnéto-mécanique pour la destruction sélective de cellules cancéreuses de pancréas tout en épargnant les cellules saines.

Une nouvelle approche pour détruire les cellules cancéreuses est développée en collaboration entre le laboratoire de biologie BIOMICS et le laboratoire de magnétisme SPINTEC, tous deux au sein de l’IRIG. Cette méthode utilise des particules magnétiques dispersées parmi les cellules cancéreuses, mises en vibration à basse fréquence (1-20 Hz) par un champ magnétique rotatif. Ces vibrations induisent un stress mécanique sur les cellules, déclenchant leur mort (apoptose) de manière contrôlée.
L’effet a été démontré in vitro sur divers types de cellules cancéreuses (gliome, pancréas, rein) en culture 2D, ainsi que sur des sphéroïdes 3D (tumoroïdes) de cellules cancéreuses pancréatiques et des organoïdes de cellules saines. Les modèles 3D, plus proches des tissus biologiques réels, facilitent la transition vers des études in vivo et réduisent le recours aux modèles animaux. Les premiers résultats montrent que les cellules cancéreuses pancréatiques ont une plus grande affinité pour les particules magnétiques et sont plus sensibles au stress mécanique que les cellules saines, permettant une destruction sélective.
La prochaine étape consistera à confirmer cette spécificité dans des sphéroïdes mixtes (cellules cancéreuses et saines), à quantifier statistiquement ces résultats, et à élucider les mécanismes mécanobiologiques responsables de la mort cellulaire. Ces résultats prometteurs ouvrent la voie à une approche biomédicale innovante contre les cancers.

Régulation de l’expression des gènes par l’acétylation et la lactylation des protéines histones

Dans les cellules eucaryotes, l’ADN s’enroule autour de protéines histones pour former la chromatine. La modification dynamique des histones par diverses structures chimiques permet de réguler finement l’expression des gènes. Des altérations dans ces mécanismes complexes de régulation sont à l’origine de nombreuses maladies. L’acétylation des lysines d’histones est connue pour induire l’expression des gènes. D’autres structures peuvent être ajoutées sur les histones, dont les effets sur la transcription restent largement à élucider. La plupart d’entre elles, comme la lactylation découverte en 2019, dépendent du métabolisme cellulaire. Nous étudions cette nouvelle modification dans la spermatogenèse murine : ce processus de différentiation cellulaire constitue en effet un modèle de choix pour étudier la régulation de la transcription, du fait de changements spectaculaires dans la composition de la chromatine et dans le programme d’expression génique. Nous avons établi la distribution sur le génome de marques acétylées et lactylées sur trois lysines de l’histone H3. L’objet de cette thèse est de contribuer au déchiffrage du « langage histone », d’abord en étudiant le rôle des lactylations sur le programme transcriptionnel. Ensuite, la prédiction d'états chromatiniens sera raffinée en intégrant nos nouvelles données à de nombreuses données épigénomiques disponibles, au sein de modèles de réseaux de neurones.

Études théoriques des courants orbitaux et des méchanismes de conversion afin d’optimiser les performances des dispositifs à couple spin-orbite

La thèse de doctorat proposée vise à comprendre et à identifier les paramètres clés qui régissent la conversion des moments orbitaux en courants de spin, dans le but d'améliorer l'efficacité d'écriture des dispositifs de mémoire magnétique à l’accès aléatoire à base de couple spin-orbite (SOT-MRAM). Les travaux utiliseront une approche de modélisation multi-échelle comprenant des calculs ab initio, liaisons fortes et atomistiques de l'effet Hall orbital (OHE) et de l'effet Rashba-Edelstein orbital (OREE). Ces phénomènes présentent des amplitudes et des longueurs de diffusion orbital qui peuvent être plus importantes que leurs équivalents de spin, l'effet Hall de spin (SHE) et l'effet Rashba-Edelstein (REE). De plus, ils sont présents dans une gamme plus large de matériaux, y compris les métaux légers à faible résistivité. Cela ouvre des perspectives très intéressantes pour des matériaux plus efficaces et plus conducteurs, susceptibles de lever les verrous limitant le déploiement technologique de la SOT-MRAM.

Cette thèse jouera un rôle essentiel dans une collaboration étroite entre laboratoires SPINTEC (Spintronique et Technologies de Composants) et LETI (Laboratoire d'électronique des technologies de l'information)au CEA. Le doctorant conduira les calculs ab initio à SPINTEC afin de dévoiler les caractéristiques des matériaux fondamentales pour exploiter les phénomènes orbitroniques décrits, et il construira des hamiltoniens multi-orbitaux au LETI pour calculer le transport orbital et de spin, en forte interaction/synergie avec expérimentateurs travaillant sur développement de SOT-MRAM. Le doctorat sera co-supervisé par M. Chshiev, K. Garello à Spintec et J. Li au LETI. Ce projet de doctorat sera au cœurs de collaborations avec des groupes théoriques et expérimentaux de premier au niveau national et international.

Les candidats hautement motivés ayant une solide formation en physique des solides, en théorie de la matière condensée et en simulations numériques sont encouragés à postuler. Le candidat sélectionné effectuera des calculs à l'aide du cluster de calcul de Spintec, en s'appuyant sur des progiciels basés sur les principes fondamentaux de la DFT et d'autres outils de simulation. Les résultats seront analysés de manière rigoureuse et pourront être publiés dans des revues internationales à comité de lecture.

Alliage digital (GaN)n/(AlN)m pour la réalisation de LED capable d'émettre dans l'UV profond

Contexte :
Les semiconducteurs nitrures du groupe III (GaN, AlN, InN) sont réputés pour leurs excellentes propriétés d’émission lumineuse. Depuis plus de deux décennies, ils sont à la base des LED bleues et blanches utilisées dans le monde entier, grâce à des puits quantiques InGaN très efficaces (rendement quantique externe > 80 %). En revanche, les LED UV basées sur des puits quantiques AlGaN restent très peu efficaces (< 10 %) et ne sont devenues commercialement disponibles que récemment. Surmonter cette limitation constitue un défi majeur en optoélectronique : obtenir une émission UV profonde efficace (220–280 nm) permettrait de développer des applications bactéricides performantes, telles que la purification de l’eau, la stérilisation de surfaces ou l'élimination de virus.

Récemment, deux concepts innovants se sont révélés particulièrement prometteurs pour les LED UV :
1. Émission UV profonde à partir de monocouches de GaN dans l’AlN : il s’agit de faire croître quelques monocouches atomiques (ML) de GaN insérées dans une matrice d’AlN. Ce confinement quantique extrême conduit à une émission dans l’UV profond, jusqu’à 220 nm. Une forte efficacité d’émission est attendue grâce à une liaison excitonique intense, stable même à température ambiante.
2. Amélioration du dopage à l’aide d’alliages numériques gradués GaN/AlN : cette approche consiste à utiliser un alliage digital (GaN)?/(AlN)?, où n et m représentent le nombre de couches atomiques. Cette architecture permet un dopage efficace de type n et surtout p, ce qui constitue un verrou technologique majeur dans les matériaux AlGaN. Le GaN étant beaucoup plus facile à doper que l’AlN, cette méthode s’avère très prometteuse pour la fabrication de dispositifs.

Objectifs scientifiques :
L’objectif est de maîtriser la croissance de monocouches par MOVPE (épitaxie en phase vapeur métal-organique), la technique la plus pertinente sur le plan industriel :
- Projet de M2 : développer la croissance de monocouches de GaN sur substrats d’AlN, étudier leurs propriétés d’émission dans l’UV profond et optimiser les conditions de croissance pour obtenir un dépôt auto-limitant d’une seule couche.
- Poursuite en thèse : concevoir et fabriquer des alliages digitaux dopés GaN/AlN afin de réaliser les premières LED UV profondes efficaces basées sur cette architecture.

Contexte du laboratoire et collaborations :
Le groupe dispose d’une longue expérience dans l’étude de l’émission lumineuse visible et UV à partir de nanofils de nitrures. Nous avons déjà démontré une émission à 280 nm à partir un alliage digital (GaN)?/(AlGaN)?, confirmant la faisabilité de cette approche. Le projet sera fortement expérimental (croissance épitaxiale, caractérisations structurales et optiques avancées) et mené en étroite collaboration avec l’Institut Néel pour l’analyse en cathodoluminescence et la fabrication de dispositifs.

Pourquoi rejoindre ce projet ?
Acquérez une expertise en épitaxie, en physique des semiconducteurs et en optoélectronique. Travaillez dans un environnement dynamique et collaboratif, en lien étroit avec le monde industriel. Contribuez au développement de la prochaine génération de LED émettant dans l’UV profond.

Ajustement de structures moleculaires flexibles dans des films topographiques d'AFM a haute vitesse

La biologie structurale cherche à comprendre la fonction des macromolécules en déterminant la position précise de leurs atomes. Ses méthodes traditionnelles (cristallographie aux rayons X, RMN, microscopie électronique), bien qu’efficaces, offrent une vision statique des macromolecules, limitant l’étude de leur dynamique. Un nouveau paradigme émerge : la biologie structurale intégrative, combinant plusieurs techniques pour capturer, entre autre, la dynamique moléculaire. Cependant, malgré les améliorations apportées à la cristallographie sérielle femtoseconde, aux simulations de dynamique moléculaire et à la cryo-tomographie électronique, les méthodes actuelles peinent à atteindre l’échelle temporelle fonctionnelle (millisecondes à secondes).
L'avènement de la nouvelle microscopie à sonde à balayage, et en particulier, le développement récent de la microscopie à force atomique à haute vitesse (HS-AFM), permet d’observer des mouvements moléculaires à l’échelle de la milliseconde, mais manque de résolution atomique pour révolutionner la biologie structurale. L’objectif du sujet proposé est d’exploiter plus en avant l’utilisation de la HS-AFM en modélisant des structures atomiques détaillées au cœur des images obtenues. Les taches seront à la fois biophysique et informatique par l’amélioration de l’outils AFM-Assembly existant qui permet l’ajustement spatial direct de coordonnées atomiques de la molécule cible sous la topographie AFM. Le but est d’appliquer ce protocole à un nouveau type de données massives que sont les films topographiques obtenues par l’AFM à haute vitesse.
La thèse sera menée à l’Institut de biologie structurale de Grenoble, au sein du groupe Microscopie électronique et méthodes (MEM) de l’Institut de recherche interdisciplinaire de Grenoble (IRIG). Elle se fera en collaboration avec le laboratoire DyNaMo de Marseille, spécialisé dans l’acquisition de données haute vitesse en AFM, dans le cadre d'une demande de financement ANR commune.
L’intérêt scientifique du projet est majeur pour la biologie structurale intégrative moderne. Le grand défi scientifique des années à venir en biologie structurale est l’étude et l’analyse de la dynamique des molécules, afin de sortir du paradigme actuel (photographie instantanée) et de participer à l’émergence d’un nouveau paradigme (le film en temps réel).

Un nouveau matériau altermagnétique aux propriétés remarquables pour la spintronique

Les altermagnétiques constituent une nouvelle classe de matériaux magnétiques qui combinent de manière unique les avantages des ferromagnétiques (polarisation de spin des courants électriques) et des antiferromagnétiques (robustesse face aux champs magnétiques et dynamique de spin ultrarapide). Dans le cadre d’une collaboration internationale, nous avons découvert expérimentalement l’un des tout premiers et encore rares altermagnétiques disponibles, Mn5Si3, ouvrant ainsi la voie à de nouvelles recherches fondamentales et appliquées. Jusqu’à présent, le Mn5Si3 était principalement synthétisé par épitaxie par jets moléculaires, une méthode de haute précision mais présentant certaines limitations pour des études plus larges. Notre objectif est désormais de développer la croissance du Mn5Si3 par pulvérisation à haute température, une technique plus polyvalente et compatible avec les procédés industriels, afin d’explorer et démontrer ses propriétés de spin exceptionnelles.

Top