L'infertilité est un problème croissant dans tous les pays développés. Les méthodes standard de diagnostic de la stérilité masculine examinent la concentration, la mobilité et les anomalies morphologiques des spermatozoïdes individuels. Cependant, 40% des cas d'infertilité masculine reste inexpliqué avec les outils de diagnostic standard.
Dans cette thèse, nous explorerons la possibilité de déterminer les causes de l'infertilité masculine à partir de l'analyse détaillée des trajectoires 3D et de la morphologie des spermatozoïdes nageant librement dans un environnement imitant les conditions de l'appareil reproducteur féminin. Pour cette tâche difficile, nous développerons un microscope spécialisé basé sur l'holographie pour l'imagerie rapide et le suivi des spermatozoïdes individuels. Outre les méthodes numériques classiques, nous utiliserons des algorithmes d'intelligence artificielle pour améliorer la qualité de l'imagerie et pour analyser les données multidimensionnelles.
Tout au long du projet, nous collaborerons étroitement avec un institut de recherche médicale (CHU/IAB) spécialisé dans les technologies de reproduction assistée (ART). Nous examinerons des échantillons de patients réels afin de développer un nouvel outil pour le diagnostic de l'infertilité masculine.
Développement du 4D-STEM à inclinaisons variables
Le développement du 4D-STEM (Scanning Transmission Electron Microscopy) a profondément renouvelé la microscopie électronique en transmission (TEM), en permettant l’enregistrement simultané d’informations spatiales (2D) et de diffraction (2D) à chaque position du faisceau. Ces jeux de données dits « 4D » offrent la possibilité d’extraire une grande variété de contrastes virtuels (imagerie en champ clair, champ sombre annulaire, ptychographie, cartographies de déformation ou d’orientation) avec une résolution spatiale nanométrique.
Dans ce contexte, le 4D-STEM à inclinaisons variables (4D-STEMiv) constitue une approche émergente, qui consiste à acquérir séquentiellement des motifs de diffraction électronique pour différentes inclinaisons du faisceau incident. Conceptuellement proche de la microscopie à précession électronique (PED), cette méthode offre une flexibilité accrue et ouvre de nouvelles perspectives : amélioration du rapport signal/bruit, possibilité d’obtenir une imagerie bidimensionnelle rapide à plus haute résolution spatiale, accès à une information tridimensionnelle (orientation, déformation, phase) et optimisation du couplage avec les analyses spectroscopiques (EELS, EDX). Le développement du 4D-STEMiv représente ainsi un enjeu méthodologique majeur pour la caractérisation structurale et chimique de matériaux avancés, notamment dans le domaine des nanostructures, des matériaux bidimensionnels et des systèmes ferroélectriques.
Développement et monitoring multiparamétrique d’un modèle microfluidique sur puce de la barrière hémato-encéphalique
La barrière hémato-encéphalique (BHE) assure la protection du cerveau en contrôlant les échanges entre le sang et le tissu nerveux. Cependant, les modèles actuels peinent à reproduire fidèlement sa complexité. Cette thèse vise à développer puis à évaluer un nouveau modèle microfluidique de BHE sur puce intégrant un système de monitoring en temps réel combinant mesures optiques et électriques en simultané. Le dispositif permettra d’étudier la perméabilité, la résistance transendothéliale et la réponse cellulaire à divers stimuli pharmacologiques ou toxiques. En combinant microtechnologies, co-cultures cellulaires et capteurs intégrés, cet avatar biologique offrira une approche plus physiologique et dynamique que les systèmes in vitro classiques permettant d’améliorer la compréhension des phénomènes de diffusion/perméation des molécules thérapeutiques. Ce projet contribuera au développement d’outils prédictifs pour la neuropharmacologie, la toxicologie et la recherche sur les maladies neurodégénératives.
Approche intégrée matériau–procédé–dispositif pour la conception de transistors RF haute performance sur technologies nanométriques avancées
Cette thèse vise à développer et optimiser des technologies de dispositifs semi-conducteurs avancés pour applications radiofréquences, en s’appuyant sur la filière FD-SOI et en explorant les architectures tridimensionnelles émergentes telles que les transistors GAA et CFET. L’objectif scientifique principal est d’améliorer les performances RF essentielles — telles que fT, fmax, la linéarité ou le bruit — par une co-optimisation conjointe des matériaux, des procédés technologiques et de la conception des dispositifs.
Le projet s’appuiera sur une approche intégrée combinant développement expérimental, analyses structurales, caractérisations électriques et simulations TCAD avancées. Cette méthodologie permettra d’identifier les mécanismes limitants propres à chaque type d’intégration, de quantifier leur potentiel respectif et d’établir un lien direct entre les choix matériaux/processus et les performances RF mesurées. Une attention particulière sera portée à l’ingénierie fine des architectures de transistors, incluant notamment l’optimisation des spacers, des matériaux de grille, du positionnement des jonctions ainsi que des facettes épitaxiées source/drain. La co-conception procédé/dispositif visera à réduire les résistances d’accès, les capacités parasites et les effets de non-linéarité susceptibles de dégrader les performances haute fréquence.
À travers une modélisation comparative des filières planaires FD-SOI et des intégrations tridimensionnelles GAA/CFET, la thèse cherchera à dégager des orientations technologiques pertinentes pour les futures générations de transistors RF. Situé à l’interface entre science des matériaux, physique des dispositifs et ingénierie de fabrication, ce travail ambitionne de fournir des recommandations pour le développement de technologies RF haute efficacité destinées aux communications 5G/6G, aux radars automobiles et aux systèmes IoT basse consommation.
Amélioration de la compréhension de l'origine du bruit dans les dispositifs quantiques
Grâce à de solides collaborations entre les équipes de plusieurs instituts de recherche et les infrastructures de salle blanche du CEA-LETI, Grenoble a été un pionnier dans le développement de dispositifs à qubits de spin en tant que plateforme pour l’informatique quantique. La durée de vie de ces qubits de spin est très sensible aux fluctuations de leur environnement électrique, connues sous le nom de bruit de charge. Ce bruit de charge dans les dispositifs à qubits de spin provient potentiellement d’événements de piégeage/dépiégeage au sein des matériaux amorphes et défectueux (par exemple, SiO2, Si3N4). Ce sujet de doctorat vise à mieux comprendre l’origine de ce bruit par des simulations numériques et à orienter le développement de dispositifs quantiques vers des niveaux de bruit plus faibles et des qubits de meilleure qualité.
L’objectif de ce sujet est d’améliorer la compréhension du bruit dans les dispositifs à qubits de spin grâce à des simulations multi-échelles allant de l’échelle atomistique à celle du dispositif. Le doctorant utilisera les codes développés au CEA pour la modélisation numérique des qubits de spin et exploitera les capacités de calcul intensif pour réaliser les simulations. En fonction du profil et des intérêts du candidat, un travail de développement de code pourra être envisagé. Le travail impliquera également des collaborations avec des expérimentateurs afin de valider les méthodes de simulation et d’aider à l’interprétation des résultats expérimentaux.
PCB instrumenté pour la maintenance prédictive
La fabrication des équipements électroniques et plus particulièrement celui des PCB (Printed Circuit Board) occupent une part importante de l’impact environnemental du numérique qui doit être minimisé. Dans une logique d’économie circulaire, le développement d’outils de suivi et de diagnostic de l’état de santé de ces cartes pourrait alimenter le passeport numérique du produit et faciliter leur réutilisation dans une seconde vie et. Dans une logique de maintenance préventive et prescriptive, ces outils pourraient augmenter leur durée de vie en évitant un remplacement périodique inutile dans les applications pour lesquelles la fiabilité est une priorité ainsi que d’adapter leur usage dans le but d’éviter leur détérioration prématurée.
Cette thèse propose d’explorer l’instrumentation innovante de PCB à l’aide de capteurs ‘virtuels’, estimateurs avancés alimentés par des modalités de mesure (de type piézoélectriques, ultrasonores, etc.) qui pourraient être intégrées au sein même des PCB. L’objectif est de développer des méthodes de suivi de l’état de santé des cartes, tant sur le plan mécanique (fatigue, contraintes, déformations) qu’électronique.
Une première étape consistera à réaliser un état de l’art et des simulations pour sélectionner les capteurs pertinents, définir les grandeurs à mesurer et optimiser leur implantation. La modélisation multi-physique et la réduction de modèles permettront ensuite de relier les données à des indicateurs d’intégrité du PCB caractérisant son état de santé. La démarche combinera modélisations numériques, validations expérimentales et méthodes d’optimisation multiparamétriques.
Sondage de circuits intégrés par faisceau électronique
La sécurité des systèmes numériques repose sur l’établissement de chaînes de confiance cryptographiques allant du matériel jusqu’aux applications finales. Les circuits intégrés sont à la base des chaines de confiances et stockent pour cela des secrets qui, via différentes contremesures, sont supposés non modifiables et non observables.
L’une des menaces connues dans la littérature est l’utilisation de Microscopes Électronique à Balayage (MEB) pour l’extraction de signaux sensibles. En effet, le MEB, via le phénomène de contrastes de potentiel permet de déterminer « visuellement » la valeur d’un ou plusieurs signaux présents dans une zone du circuit, cette zone pouvant être un niveau de métal ou un transistor. Cette utilisation du MEB sur la face avant des circuits est connue et mise en œuvre depuis les années 90 dans le domaine d’analyse de défaillance. Cependant cette technique est devenue inapplicable avec les progrès des technologies, notamment la finesse de gravure et l’augmentation du nombre de couche de métaux. Des travaux récents (2023) ont montré que le sondage avec MEB était possible via la face arrière du circuit, en observant les transistors via le substrat de silicium. Ces travaux ont été effectués sur des technologies assez anciennes (135 µm). Il est aujourd’hui essentiel de déterminer si ces menaces sont avérées sur les technologies récentes (Bulk, FD-SOI, FinFET), car les futures chaînes de confiance pourraient être compromise.
Un premier défi de la thèse est de fiabiliser le processus de préparation d’échantillon permettant l’accès aux parties actives des transistors via la face arrière tout en gardant le système fonctionnel. Un second défi sera de caractériser les phénomènes de contraste de potentiels et d’observations via l’instrumentation de MEB en vue d’extraire des secrets. Une fois la technique maitrisée nous chercherons à comparer l’effet de la technologie sur cette famille d’attaque et en particulier déterminer les potentiels avantages intrinsèques de la technologie FD-SOI en vue de s’en prémunir.
Développement de sources de photons multiplexées pour les technologies quantiques
Les technologies de l’information quantique offrent de nombreuses promesses notamment dans le domaine du calcul et des communications sécurisées. Les qubits photoniques, du fait de leur excellente robustesse à la décohérence sont particulièrement intéressants pour les communications quantiques, y compris à température ambiante. Ils offrent également une alternative à d’autres technologies de qubits dans le cadre du calcul quantique. Afin de déployer à grande échelle ces applications, il est nécessaire de disposer de dispositifs compacts, bon marché, en grand nombre. La photonique sur silicium est une plate-forme attractive pour parvenir à cet objectif, en implémentant différents composants clé de génération, manipulation et détection de qubits photoniques. Sur silicium, la génération de qubits photoniques repose sur la génération de paires de photons par effet non-linéaire dans le silicium, présentant différents attraits tels que le fonctionnement à température ambiante, la possibilité d’utiliser la paire de photons comme source de photons uniques annoncés, et la possibilité de générer des photons indiscernables à partir de deux sources spatialement distinctes.
L’objectif de cette thèse est de travailler au développement, au suivi de fabrication et à la caractérisation en laboratoire de sources de paires de photons multiplexées sur puce silicium afin de surpasser les limites inhérentes au processus physique de génération de paires de photons. Dans l’objectif d’une intégration complète sur une puce unique, il sera également essentiel de pouvoir filtrer efficacement la lumière indésirable, afin de ne garder que les photons d’intérêt. C’est pourquoi un accent particulier sera également mis sur le développement de filtres intégrés à très fort taux de réjection.
Réseaux neuronaux liquides à base d’oscillateurs verrouillés par injection pour une intelligence embarquée générative
Les architectures neuromorphiques actuelles, bien que plus efficaces grâce au in-memory computing, restent limitées par la densité extrême en poids et interconnexions, rendant leur implémentation matérielle complexe et coûteuse. Les Liquid Neural Networks (LNN), introduits par le MIT au niveau algorithmique, offrent une rupture : des neurones dynamiques à temps continu capables d’ajuster leurs constantes internes selon le signal reçu, réduisant drastiquement le nombre de paramètres nécessaires.
L’objectif de la thèse est de transposer les algorithmes des LNN au niveau circuit, en développant des cellules analogiques très faible consommation à base d’oscillateurs, réalisant le calcul neuronal dans le domaine temporel et reproduisant la dynamique liquide, puis en les interconnectant dans une architecture stable et récurrente afin de viser des applications d’IA générative. Un démonstrateur silicium sera conçu et validé, ouvrant la voie à une nouvelle génération de systèmes neuromorphiques liquides pour l’Edge AI.
Analyse et conception de surfaces à impédance à dispersion contrôlée
L'ingénierie de la dispersion (DE) désigne le contrôle de la propagation des ondes électromagnétiques dans une structure en modulant la relation entre la fréquence et la vitesse de phase. Grâce à des matériaux et des surfaces artificiellement conçus, il est possible d’ajuster cette relation afin d’obtenir des comportements de propagation non conventionnels, permettant ainsi un contrôle précis des effets dispersifs du système. Dans le domaine des antennes, le DE peut améliorer plusieurs aspects essentiels des performances en rayonnement, notamment la largeur de bande en gain, la précision de balayage du faisceau et, plus généralement, la réduction des distorsions inhérentes aux variations de fréquence. Il peut également permettre des fonctionnalités supplémentaires, telles que le fonctionnement multibande ou le comportement multifocal dans des antennes à lentilles ou réflecteurs.
Cette thèse vise à étudier les phénomènes physiques régissant le contrôle des vitesses de phase et de groupe dans des surfaces artificielles bidimensionnelles présentant des impédances effectives dépendantes de la fréquence. Une attention particulière sera portée aux architectures à alimentation spatiale, telles que les réseaux transmetteurs et réflecteurs, où la dispersion joue un rôle déterminant. L’objectif est d’établir des formulations analytiques permettant de contrôler simultanément le retard de groupe et le retard de phase, de développer des modèles généraux et d’évaluer les limites fondamentales de ces systèmes en termes de performances en rayonnement. Ce travail est particulièrement pertinent pour les antennes à très fort gain, domaine dans lequel l’état de l’art reste limité. Les conceptions actuelles basées sur le DE présentent généralement une bande passante étroite, et aucune solution compacte à très fort gain (> 35 dBi) ne parvient encore à surmonter les dégradations liées à la dispersion, telles que la baisse de gain ou le dépointage du faisceau.
Le doctorant développera des outils théoriques et numériques, étudiera de nouveaux concepts de cellules unitaires périodiques pour les surfaces d’impédance, et concevra des architectures d’antennes avancées exploitant des principes tels que le délai de temps réel, le fonctionnement multibande à ouverture partagée ou la focalisation en champ proche avec minimisation des aberrations chromatiques. Le projet explorera également des technologies de fabrication alternatives afin de dépasser les contraintes des procédés classiques de PCB et de libérer de nouvelles capacités de contrôle de la dispersion.