Vers un apprentissage fédéré et un affinement distribué efficace sur des dispositifs hétérogènes et à ressources restreintes
L’objectif de cette thèse est de développer des méthodes visant à améliorer l’efficacité des ressources dans le cadre de l’apprentissage fédéré (FL), en tenant compte des contraintes et de l’hétérogénéité des ressources des clients. Le travail portera dans un premier temps sur l’architecture classique client-serveur de l’apprentissage fédéré, avant d’étendre l’étude aux environnements fédérés décentralisés. Les méthodes proposées seront étudiées à la fois dans le contexte de l’entraînement fédéré de modèles et dans celui de l’affinement distribué de modèles de grande taille, tels que les grands modèles de langage (LLMs).
Développement d’une méthode de mesure en ligne des gaz radioactifs basée sur les scintillateurs poreux
En tant que laboratoire national de métrologie pour le domaine des rayonnements ionisants, le Laboratoire National Henri Becquerel (LNE-LNHB) du Commissariat à l’Énergie Atomique (CEA) dispose d’installations uniques dédiées à la métrologie des radionucléides, dont différents bancs de production d’étalons en phase liquide et d’autres pour le mélange de gaz radioactifs. Dans le cadre de précédents projets de recherche, une installation a été mise en place pour la production d’atmosphères de gaz radioactifs [1] afin de développer de nouveaux moyens d’essais et d’étalonnage répondant aux besoins de la recherche et de l’industrie dans ce domaine.
Une des grandes problématiques actuelles est de reproduire les conditions environnementales de manière la plus représentative possible, afin de répondre au mieux aux exigences réelles (principalement liées aux contraintes réglementaires) en termes d’activité volumique ou de conditions de mesure. Cette problématique générale concerne toutes les substances radioactives, mais elle est particulièrement importante actuellement pour les substances radioactives volatiles. À travers de nombreux projets et collaborations, le CEA/LNHB explore depuis plusieurs années de nouveaux moyens de détection plus performants que les techniques classiques de scintillation liquide. Parmi ces techniques, on peut citer de nouveaux scintillateurs inorganiques poreux [1] qui permettent non seulement la détection en ligne, mais aussi le dé-mélange en ligne d’émetteurs bêta pur (cette technique a été brevetée [2]).
L’objectif de cette thèse est de développer, de mettre en place et d’optimiser ces méthodes de mesure en les appliquant : 1) à un gaz radioactif pure, 2) en mélange multiples de gaz radioactifs émetteurs beta pure et de les identifier par « dé-mélange » dans le cas des scintillateurs poreux, et 3) de manière plus globale en scintillation liquide, cette possibilité ayant été démontrée récemment au LNHB et en cours de publication. Le dé-mélange a notamment un intérêt car il simplifie grandement les mesures de suivit environnementaux en scintillation notamment pour les mélanges 3H et 14C. Actuellement ils sont réalisés par de multiples prélèvements par bulleur puis mélange à un liquide scintillant et la méthode des triples marquages nécessitant plusieurs mois de préparation en étalonnage et quelques semaines d’expérience et préparation. Cette thèse sera directement en lien avec les travaux d’une seconde thèse sur le Compton-TDCR [1] (2025-2028), qui permettra de déterminer la courbe de réponse des scintillateurs.
Les enjeux scientifiques de ce projet sont donc liés à la métrologie des radionucléides et allient expérimentation, instrumentation et analyse pour le développement de méthodes de mesure. Il s’agira de:
- Développer une méthode d’analyse de dé-mélange d’émetteurs beta pur par scintillation en partant des premières idées publiées et déposées.
- D’évaluer la précision de ces dé-mélanges en estimant les incertitudes associées et les seuils de décision.
- De valider le dé-mélange en utilisant le banc gaz radioactif expérimental du laboratoire [1] pour différents gaz radioactifs 3H, 14C, 133Xe, 85Kr, 222Rn, etc. ou bien la scintillation liquide classique.
- D’améliorer le modèle en développant des outils basés sur la machine learning ou l’intelligence artificielle, s’ils sont nécessaires, pour des mélanges à multiples composantes.
Internalisation des connaissances externes par les modèles de fondation
Pour accomplir une tâche inconnue, un sujet (humain ou robot) doit consulter des informations externes, ce qui implique un coût cognitif. Après plusieurs expériences similaires, il maîtrise la situation et peut agir automatiquement. Les années 1980 et 1990 ont vu des explorations en IA avec des schémas et graphes conceptuels, mais leur mise en œuvre à grande échelle était limitée par la technologie de l'époque.
Les modèles neuronaux actuels, notamment les transformers et les LLM/VLM, apprennent des représentations universelles grâce à un préentraînement sur d'énormes quantités de données. Ils peuvent être utilisés avec des prompts pour fournir un contexte local. L'affinage (fine-tuning) permet de spécialiser ces modèles pour des tâches spécifiques.
Les méthodes de type RAG et GraphRAG permettent d'exploiter des connaissances externes, mais leur utilisation à l'inférence est coûteuse en ressources. Cette thèse propose une approche cognitiviste dans laquelle le système effectue un apprentissage continu. Il consulte des sources externes lors de l'inférence et utilise ces informations pour s'affiner régulièrement, comme pendant le sommeil. Cette méthode vise à améliorer la performance et réduire la consommation de ressources.
Chez l'humain, ces processus sont liés à l'organisation spatiale du cerveau. La thèse étudiera également des architectures de réseaux inspirées de cette organisation, avec des "zones" dédiées mais interconnectées, comme les modèles vision-langage et langage-seul partageant des couches transformers.
Ces concepts peuvent être appliqués aux projets Astir et Ridder, visant à exploiter les modèles de fondation pour l'ingénierie logicielle en robotique et le développement de méthodes d'IA générative pour la commande sécurisée de robots.
Nouvelles contraintes expérimentales sur les constantes de couplage de l’interaction faible par la mesure en coïncidence de schémas de désintégration complexes
La caractérisation expérimentale précise des transitions bêta interdites non-uniques, représentant environ un tiers de toutes les transitions bêta connues, est un sujet à la fois important et très ardu. De fait, très peu d’études fiables existent dans la littérature. En effet, le spectre en énergie continu de ces transitions est difficile à mesurer précisément pour diverses raisons qui se cumulent les unes aux autres : grande diffusivité des électrons dans la matière et non-linéarité du système de détection, indisponibilité de certains radionucléides et présence d’impuretés, longues périodes de désintégration et complexité des schémas, etc. Des prédictions théoriques réalistes sont tout aussi difficiles car il est nécessaire de coupler des modélisations précises des structures atomiques et nucléaires des radionucléides à travers l’interaction faible, dans un même formalisme complètement relativiste. Pourtant, améliorer notre connaissance des transitions bêta interdites non-uniques est essentiel en métrologie de la radioactivité pour définir l’unité SI du becquerel dans le cas des émetteurs bêta purs. Cela peut avoir un impact fort en médecine nucléaire, pour l’industrie du nucléaire, et pour certaines thématiques de physique fondamentale, comme la recherche de matière noire et la physique des neutrinos de réacteurs.
Notre étude récente de la transition deuxième interdite non-unique du 99Tc, à la fois théorique et expérimentale, a mis en évidence que les transitions interdites non-uniques peuvent être particulièrement sensibles à la valeur effective des constantes de couplage de l’interaction faible. Ces dernières interviennent comme facteurs multiplicatifs des éléments de matrice nucléaires. L’utilisation de valeurs effectives permet de compenser les approximations employées dans les modèles de structure, telles que des corrélations simplifiées entre les nucléons dans l’espace de valence ou l’absence d’excitation du cœur. Cependant, leur ajustement ne peut se faire que par comparaison avec un spectre expérimental de grande précision. La prédictibilité des calculs théoriques, même les plus précis actuellement disponibles, est ainsi fortement remise en cause. S’il a déjà été démontré que des valeurs universelles ne peuvent être fixées, des valeurs pour chaque type de transition, ou pour un modèle nucléaire spécifique, sont possibles. Le but de ce sujet de thèse est donc d’établir de nouvelles contraintes expérimentales sur les constantes de couplage de l’interaction faible en mesurant précisément les spectres en énergie de transitions bêta. À terme, cela permettra d’établir des valeurs effectives moyennes robustes de ces constantes de couplage et d’obtenir un vrai pouvoir prédictif pour les calculs théoriques de désintégration bêta.
La plupart des transitions d’intérêt pour contraindre les constantes de couplage ont des énergies supérieures à 1 MeV et se situent au sein de schémas de désintégration complexes, avec émission de multiples photons gamma. Dans cette situation, la meilleure stratégie consiste en une détection bêta-gamma en coïncidence. Les techniques usuelles de détection en physique nucléaire sont appropriées mais nécessitent d’être extrêmement bien implémentées et contrôlées. Le doctorant pourra s’appuyer sur les résultats obtenus lors de deux thèses précédentes. Pour minimiser le phénomène d’auto-absorption des électrons dans la source, il devra améliorer une technique de préparation de sources radioactives ultra-minces développée au LNHB pour l’adapter aux activités importantes qui seront nécessaires. Il devra implémenter un nouveau dispositif de mesure, dans une chambre à vide dédiée, comprenant une détection en coïncidence de deux détecteurs silicium et deux détecteurs gamma. Plusieurs études seront nécessaires, mécaniques et par simulation Monte Carlo, pour optimiser la configuration géométrique en regard des différentes contraintes. L’optimisation de la chaîne d’électronique, l’acquisition, le traitement du signal, l’analyse des données, la déconvolution spectrale et l’élaboration d’un bilan d’incertitudes complet et robuste seront autant de sujets abordés. Ces développements instrumentaux permettront de mesurer avec une grande précision les spectres du 36Cl, du 59Fe, du 87Rb, du 141Ce, ou encore du 170Tm.
Ce sujet très complet permettra au doctorant d’acquérir des compétences instrumentales et d’analyse qui lui ouvriront de nombreuses opportunités de carrière. Le candidat devra posséder de bonnes connaissances en instrumentation nucléaire, en programmation et en simulations Monte Carlo, ainsi qu’une connaissance raisonnable des désintégrations nucléaires.
Développement de microcalorimètres magnétiques ultra haute résolution pour l’analyse isotopique d’actinides par spectrométrie de photons X et gamma
Le sujet de thèse porte sur le développement de microcalorimètres magnétiques (CMM) ultra haute résolution pour améliorer l’analyse isotopique d’actinides (uranium, plutonium) par spectrométrie X et gamma autour de 100 keV. Cette analyse, essentielle dans le cycle du combustible nucléaire et la lutte contre la prolifération, repose traditionnellement sur des détecteurs HPGe, dont la résolution limite la précision. Pour surmonter ces limites, le projet vise à utiliser des détecteurs cryogéniques de type CMM fonctionnant à des températures inférieures à 100 mK et capables d’atteindre une résolution énergétique dix fois meilleure que celle des HPGe. Les détecteurs CMM seront microfabriqués au CNRS/C2N avec des composants supraconducteurs et paramagnétiques, puis testés au LNHB. Une fois étalonnés, ils serviront à mesurer avec précision les spectres de photons des actinides afin de déterminer avec précision les paramètres fondamentaux atomiques et nucléaires des isotopes étudiés. Les résultats obtenus enrichiront les bases de données nucléaires et atomiques utilisées dans les codes de déconvolution permettant une analyse isotopique d'actinides plus fiable et précise.
Etude in situ de l’impact du champ électrique sur les propriétés des matériaux chalcogénures
Les matériaux chalcogénures (PCM, OTS, NL, TE, FESO …) sont à la base des concepts les plus innovants en micro—électronique allant des mémoires PCM aux nouveaux dispositifs neuromorphiques et spinorbitroniques (FESO, SOT-RAM, etc …). Une partie de leur fonctionnement repose sur une physique hors-équilibre induite par l’excitation électronique résultant de l’application d’un champ électrique intense. La thèse vise à mesurer expérimentalement sur des couches minces de chalcogénures les effets induits par le champ électrique intense sur la structure atomique et les propriétés électroniques du matériau avec une résolution temporelle femtoseconde (fs). Les conditions « in-operando » des dispositifs seront reproduites en utilisant une impulsion THz fs permettant de générer des champs électriques de l'ordre de quelques MV/cm. Les modifications induites seront alors sondées via différents méthodes de diagnostique in situ (spectroscopie optique ou diffraction x et/ou ARPES). Les résultats seront comparés à des simulations ab initio suivant une méthode à l’état de l’art développée avec l’Université de Liège. Au final la possibilité de prévoir la réponse des différents alliages chalcogénures aux échelles de temps fs sous champ extrême permettra d’optimiser la composition et les performances des matériaux (effet de switch e-, électromigration des espèces sous champ, etc …) tout en apportant une compréhension des mécanismes fondamentaux sous-jacents liant excitation électronique, évolution des propriétés sous champ et structure atomique de ces alliages.
Modèles de fondation multimodaux à grain fin et ancrés spatio-temporellement.
Ce projet de thèse porte sur l'amélioration des modèles multimodaux de grande taille (LMMs) par l’intégration d’informations fines et spatio-temporelles dans les ensembles de données d'entraînement. Bien que les modèles actuels tels que CLIP et Flamingo présentent de bonnes performances, ils s'appuient sur des paires image-texte bruitées et peu structurées, sans ancrage spatial ou temporel explicite. La thèse vise à développer des pipelines automatiques permettant d’enrichir les jeux de données avec des métadonnées géographiques et temporelles, à affiner les légendes par l’introduction de descripteurs sémantiques plus précis, et à réguler la diversité et la compacité des données par un contrôle du nombre d'exemples par classe.
Les stratégies d'entraînement exploiteront des hiérarchies de classes et adapteront les protocoles afin d'améliorer l’alignement entre les éléments des légendes et les régions d’image correspondantes. Le travail portera également sur des régimes d’entraînement conjoints intégrant simultanément les dimensions fine, spatiale et temporelle, ainsi que sur une phase d’inférence orientée vers la génération de contenus diversifiés en mode "ensemble". Le projet abordera également des enjeux liés à la qualité des métadonnées, à l’adaptation efficace des modèles, et à la conception de benchmarks adaptés à l’évaluation multi-dimensionnelle.
Les applications ciblées incluent la génération de données synthétiques pour la conduite autonome, l’annotation enrichie d’archives médiatiques via des légendes contextualisées, et une meilleure compréhension visuelle dans les environnements industriels simulés.
Caractérisation électrique et matériau approfondie d'espaceurs à faible constante diélectrique
Dans le cadre de l'European Chip Act, le CEA-Leti s'engage à façonner l'avenir de l'électronique en développant une nouvelle génération de transistors grâce à l'architecture FDSOI. Nous recherchons un(e) thésard(e) motivé(e) pour nous aider à relever des défis passionnants liés aux performances avancées de ces transistors. Vous aurez l'opportunité de participer à un projet de pointe axé sur le développement de matériaux innovants, avec l'ambition de créer une technologie de premier plan en matière d'efficacité énergétique.
Alors que nous repoussons les limites des transistors planaires à 10 nm et 7 nm, nous faisons face à d'importants défis physiques, en particulier la réduction des éléments parasites tels que la capacitance et la résistance d'accès, qui sont essentiels pour minimiser les pertes d'énergie et optimiser les performances. Le matériau isolant utilisé pour les espaceurs jouent ici un rôle clé sur ces performances et de nombreux candidats ont été proposés pour remplacer les solutions conventionnelles avec de plus faibles permittivités (SiN, SiCO, SiCON, SiCBN). Néanmoins leur intégration introduit également des défauts inhérents entrainant la capture de charges ou la présence d'états d'interface indésirables qui nuisent à la performance finale des transistors.
L'objectif de cette thèse est de mener une enquête approfondie et une caractérisation électrique (CV, IV, BTI, HCI, etc.) du matériaux d’espaceur (interface, volume), en fournissant une analyse détaillée des performances du transistor et de ses mécanismes sous-jacents. Une caractérisation innovante par mesure de stress CV ultra-rapide sur des échantillons diélectriques sera également réalisée et la corrélation entre la performance de piégeage et les paramètres de dépôt utilisés dans leur fabrication sera établie. De plus, le candidat collaborera étroitement avec des experts pour contribuer au développement du dépôt couches minces et à la caractérisation de nouveaux matériaux par analyse de surface et caractérisation des films minces (ellipsométrie, FTIR, XRR, XPS, etc.).
Tout au long de la thèse, vous acquerrez un large éventail de connaissances, couvrant les matériaux et processus de la microélectronique, la conception intégrée analogique, tout en relevant le défi unique de la technologie FDSOI avancée à 7-10 nm. Vous collaborerez avec des équipes pluridisciplinaires pour développer une compréhension approfondie des dispositifs FDSOI et analyserez les mesures existantes. Vous ferez également partie d'un laboratoire multidisciplinaire, travaillant aux côtés d'une équipe composée de plusieurs chercheurs permanents, explorant un large éventail d'applications de recherche.
Ce thèse offre l'opportunité unique de participer à un des projet phare et ambitieux du CEA-LETI. Si vous êtes curieux et avide de relever des défis, cette opportunité est faite pour vous !
Microfluidique pour la détection biomimétique de pathogènes dans l’air
L’air représente une voie de contamination difficile à contrôler par laquelle de nombreux agents biologiques, biochimiques ou chimiques peuvent affecter les populations et le personnel soignant. Les approches de détection usuelles, qu’il s’agisse de qPCR, de tests antigéniques ou de tests ELISA, reposent toutes sur l’emploi de réactifs spécifiques aux agents recherchés. Ces approches sont par conséquent inadaptées pour détecter un pathogène inconnu dont pourrait résulter une nouvelle pandémie. Face à de tels agents inconnus, de nouveaux capteurs liés au vivant seront nécessaires pour distinguer ce qui peut être pathogène de ce qui ne devrait pas l’être. Et ceux-ci devront être miniatures pour être déployés.
La thèse proposée vise à explorer, au moyen d’un nouveau système microfluidique, des approches originales pour mener une telle détection sans a priori. En s’appuyant sur l’expérience et les développements du laboratoire, il s’agira notamment de :
- mettre au point de nouveaux matériaux et designs permettant d’optimiser et enchaîner les prélèvements de bioaérosols ;
- développer une biopuce biomimétique et optimiser les rencontres moléculaires au moyen de micro-écoulements pilotés à micro/milli échelles.
Vous concevrez ainsi une carte microfluidique intégrant de nouvelles stratégies de détection puis étudierez expérimentalement celles-ci en vous appuyant sur les prototypes développés au laboratoire.
Simulation des phénomènes d’interaction entre ondes ultrasonores et microstructure métalliques pour l’imagerie et la caractérisation
L’interaction des ondes avec la matière dépend fortement de la fréquence de ces ondes et de l’échelle de leurs longueurs d’onde au regard des propriétés du milieu considéré. Dans le cadre des applications d’imagerie ultrasonore qui nous importent, les échelles considérées pour les métaux sont généralement de l’ordre du millimètre (du dixième à plusieurs dizaines de millimètres). Or, selon les procédés de fabrication utilisés, les milieux métalliques qui sont souvent anisotropes peuvent également présenter une microstructure dont les hétérogénéités ont des dimensions caractéristiques du même ordre. Ainsi, les ondes ultrasonores se propageant à travers des métaux peuvent, dans certaines circonstances, être fortement affectées par les microstructures de ces derniers. Cela peut représenter une gêne pour certaines techniques ultrasonores (atténuation, bruit de structure) ou, au contraire, une opportunité pour estimer des propriétés locales du métal inspecté.
L’objectif général de la thèse proposée vise à approfondir la compréhension du lien entre microstructure et comportement des ondes ultrasonores pour de grandes classes de matériau en bénéficiant des savoirs combinés du LEM3 pour la génération de microstructure virtuelle et du CEA pour la simulation de la propagation d’ondes ultrasonores.
Le travail proposé combinera l’acquisition et l’analyse de données expérimentales (matériau et ultrasons), l’utilisation d’outils de simulation, et le traitement statistique de données. Cela permettra une analyse les comportements selon les classes de matériaux, voire la mise en place de procédures d’inversion permettant de caractériser une microstructure à partir d’un jeu de données ultrasonores. La combinaison de ces méthodes permettra une approche holistique contribuant à des avancées significatives dans le domaine.