Antennes miniatures Super-gain à polarisation circulaire et dépointage électronique de faisceau

Le contrôle du rayonnement (forme, polarisation) des antennes est un élément clé pour les systèmes de communications actuels et du futur. Focaliser le rayonnement de l’antenne dans une direction privilégiée permet notamment d’adresser des applications qui nécessitent du filtrage spatial. Dans le contexte particulier de l’internet des objets (IoT) où plusieurs systèmes ou objets communicants peuvent cohabiter, le filtrage spatial amené par les antennes directives permet de favoriser la communication avec des objets sélectionnés sans perturber les systèmes environnants, puisque l’énergie est focalisée uniquement dans la direction de l’objet d’intérêt. Egalement, focaliser l’énergie rayonnée dans un secteur angulaire réduit permet de limiter les pertes d’énergie dans les autres directions et ainsi limiter la consommation et favoriser l’autonomie des batteries des objets communicants. Cependant, les techniques classiques pour améliorer la directivité du rayonnement conduisent généralement à une augmentation significative de la taille de l’antenne. Par conséquence, l’intégration d’antennes directives dans les objets communicants compacts reste limitée. Cette difficulté est particulièrement critique pour les gammes de fréquences inférieures à 3 GHz lorsqu’on vise une intégration dans des objets dont les dimensions sont de l’ordre de quelques centimètres. Des antennes avec une directivité et un gain importants, multi-bandes ou large bande, une taille réduite, à polarisation linéaire ou circulaire et avec la possibilité de dépointage électronique du faisceau sont nécessaires pour le développement de nouvelles applications dans le domaine des objets communicants. Les études récentes réalisées par le CEA ont permis la démonstration des potentialités des réseaux compacts d’antennes à élément parasites super directifs et le développement conjoint d’une expertise spécifique dans ce domaine. Les travaux de thèse se dérouleront au CEA Leti Grenoble au sein du Laboratoire Antennes Propagation et Couplage Inductif (LAPCI). Les principaux objectifs de ce travail de thèse sont : 1. Contribution au développement d’outils numériques pour la conception et l’optimisation de réseaux compacts et super directifs, super gain ou à formation de faisceau ; 2. Le développent de nouvelle sources élémentaires pour les réseaux d’antennes compacts ; 3. La réalisation d’un réseau à polarisation circulaire compact super gain et avec dépointage de faisceau. Les travaux à mener combineront études théoriques, développements de modèle et outils logiciels, conceptions par simulation électromagnétique 3D et expérimentations sur prototypes en laboratoire de métrologie des champs électromagnétiques.

Expérimentation haut débit appliquée aux matériaux pour batteries

Utilisée depuis de nombreuses années dans le domaine de la pharmacie, l’expérimentation ou criblage haut débit (high throughput screening) apparait comme une méthode efficace pour conduire à la découverte accélérée de matériaux et comme un nouvel outil permettant d’élucider les relations composition-structure-propriétés fonctionnelles. Cette méthode est basée sur la synthèse combinatoire rapide d’un grand nombre d’échantillons de compositions différentes, combinée des caractérisations physico-chimiques rapides et automatisées par différentes techniques. Elle est utilement complétée par un traitement de données adapté.
Une méthodologie de ce type adaptée aux matériaux pour batteries lithium a été mise en place récemment au CEA Tech. Elle est basée d’une part sur la synthèse combinatoire de matériaux synthétisés par co-pulvérisation cathodique magnétron sous forme de couches minces, et d’autre part sur la réalisation de cartographies d’épaisseur (profilométrie), de composition élémentaire (EDS, LIBS), de structure (µ-DRX, Raman) et de propriétés électr(ochim)iques de bibliothèques de matériaux (~100) déposés sur un wafer. Une première phase a permis de mettre en place les principaux outils au travers de l’étude d’électrolytes solides amorphes de type Li(Si,P)ON pour batteries tout solide.
L’objectif de cette thèse est de poursuivre le développement de la méthode de manière à permettre l’étude de nouvelles classes de matériaux pour batteries : électrolytes cristallins ou vitrocéramiques pour Li ou Na, matériaux d’électrode oxydes, sulfures ou alliages métalliques. Il s’agira en particulier de tirer parti de nos nouveaux équipements de cartographie des propriétés physico-chimiques (µ-diffraction X, Laser-Induced Breakdown Spectroscopy) et d’établir une méthodologie de fabrication et de caractérisation de bibliothèques d’accumulateurs tout-solide en couches minces. Une partie de ce travail pourra également concerner le traitement des données et la programmation des moyens de caractérisation.
Ce travail sera l’objet de collaborations avec des chercheurs de l’ICMCB et du CENBG

Étude de résines grayscales et optimisation des procédés de lithographie pour des applications optiques sub-microniques

La photolithographie grayscale est un procédé utilisé depuis plusieurs dizaines d'années pour la réalisation de structures tridimensionnelles sur des substrats semiconducteurs, en particulier dans les domaines de l'optique et de l'opto-électronique. Cette technologie permet de réaliser des motifs 3D facilement transférables à l'industrie, grace à l'utilisation d'équipements de lithographie.
Après avoir atteint une forte expertise sur la réalisation de structures 3D supérieurs au micron grace à l'utilisation d'équipements d'insolation en I-line (365nm), le LETI souhaite développer son expertise grayscale dans l'UV profond (248nm, 193nm et 193nm immersion) afin d'atteindre des motifs submicroniques avec pour objectif l'état de l'art mondial.
Cette thèse sera consacrée à l'amélioration des connaissances physico-chimiques des nouvelles résines grayscales, dans le but d'améliorer les performances des procédés de lithographie mais également de prévoir le développement des gravures associées et des nouveaux modèles optiques pour les masques.
Vous rejoindrez l'équipe du laboratoire de lithographie du CEA-LETI, et serez également amené à échanger avec d'autres équipes (gravure, simulation optique). Vous aurez accès aux équipements de pointes installés dans les salles blanches, ainsi qu'à une plate-forme de nano-caractérisation pour mener à bien ces travaux de thèse dans une forte dynamique expérimentale.

Développement d'un modèle stochastique multiphysique pour les mesures basées sur la scintillation liquide

Pour assurer la traçabilité métrologique au niveau international dans le domaine de l’activité, le Bureau international des poids et mesures (BIPM) développe un nouvel instrument de transfert appelé « Extension du Système International de Référence » (ESIR) fondé sur la méthode dite du Rapport de Coïncidence Triples à Doubles (RCTD) basée sur des comptages en scintillation liquide avec une instrumentation spécifique à trois photomultiplicateurs. L’objectif est de permettre les comparaisons internationales de radionucléides bêta purs, de certains radionucléides se désintégrant par capture électronique, et pour faciliter les comparaisons internationales de radionucléides émetteurs de particules alpha.
La méthode RCTD est une technique de mesures primaires d'activité utilisée dans les laboratoires nationaux. Pour déterminer l’activité, son application repose sur la construction d’un modèle d’émission de photons lumineux nécessitant la connaissance de l’énergie déposée dans le scintillateur liquide. Selon le schéma de désintégration, la combinaison des différentes énergies déposées peut être complexe, en particulier lorsqu’elle résulte du réarrangement électronique suite à une désintégration par capture électronique. L’approche stochastique du modèle RCTD s’applique en échantillonnant aléatoirement les différentes émissions de rayonnements ionisants suite à une désintégration. L’ajout récent de modules de lecture automatique des données nucléaires (comme celles disponibles dans la Table des Radionucléides) dans des codes de simulations rayonnements/matière (PENELOPE, GEANT4), permet une prise en compte rigoureuse de toutes les combinaisons possibles. L’approche stochastique permet de considérer l’énergie réelle déposée dans le flacon de scintillation liquide en prenant en compte les interactions dans l’ensemble de l’instrumentation.
La thèse a pour objectif le développement d’une approche stochastique multiphysique avec le code de simulation rayonnements/matière GEANT4 pour être notamment appliquée sur le système ESIR du BIPM. Le choix du code Geant4 offre la possibilité d’intégrer le transport des particules ionisantes et des photons de scintillation. Ce développement est d’un grand intérêt pour la métrologie de la radioactivité dans le but d’assurer la traçabilité métrologique à un plus grand nombre de radionucléides avec le système ESIR du BIPM. La thèse se fera en collaboration avec le Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) qui possède déjà une expérience dans le développement d’un modèle stochastique avec le code GEANT4 pour son instrumentation dédiée à la méthode RCTD au Laboratoire national Henri Becquerel (LNE-LNHB).

Cas d'Assurance Dynamiques pour les Systèmes Autonomes Adaptatifs

Donner l'assurance que les systèmes autonomes fonctionneront de manière sûre et sécurisée est une condition préalable à leur déploiement dans des domaines d'application critiques en termes de mission et de sécurité. Généralement, les assurances sont fournies sous la forme de cas d'assurance, qui sont des arguments vérifiables et raisonnés démontrant qu'une revendication de haut niveau (concernant généralement la sécurité ou d'autres propriétés critiques) est satisfaite compte tenu d'un ensemble de preuves relatives au contexte, à la conception et à la mise en œuvre d'un système. L'élaboration de cas d'assurance est traditionnellement une activité analytique, réalisée hors ligne avant le déploiement du système, et sa validité repose sur des hypothèses/prédictions concernant le comportement du système (y compris ses interactions avec son environnement). Cependant, il a été avancé que cette approche n'est pas viable pour les systèmes autonomes qui apprennent et s'adaptent en cours de fonctionnement. Cette thèse abordera les limites des approches d'assurance existantes en proposant une nouvelle catégorie de techniques d'assurance de la sécurité fondées sur la sécurité qui évaluent et font évoluer en permanence le raisonnement de sécurité, en même temps que le système, afin de fournir une assurance de la sécurité tout au long de son cycle de vie. En d'autres termes, l'assurance de la sécurité sera fournie non seulement au cours du développement et du déploiement initiaux, mais aussi en cours d'exécution, sur la base de données opérationnelles.

Développement d’un système d’encapsulation multicouche pour la production de microcapsules cœur-coque adaptées à la croissance et la maturation d’organoïdes

Chaque année, 20 millions de personnes dans le monde sont diagnostiquées avec un cancer, 9.7 millions en décèdent (Kocarnik et al., 2021). La personnalisation du traitement pourrait fortement diminuer le nombre de décès. La thèse aborde cette thématique en proposant le développement d’organoïdes issus de biopsie de patients sur lesquels le traitement sera optimisé. La bioproduction de cellules encapsulées dans des bio-polymères est un domaine en pleine expansion pour la médecine personnalisée mais aussi pour la recherche et le criblage de médicaments, les thérapies cellulaires et la bio-ingénierie. Cette thèse s’inscrit dans ces domaines d’application à travers l’encapsulation multicouche de cellules dans des biopolymères à large gamme de viscosité.
La couche interne (cœur) offre un environnement optimal à la maturation et survie des cellules ou organoïdes et la couche externe assure une protection (coque) mécanique et une barrière filtrante contre les agents pathogènes.
Cette nouvelle thèse se propose de développer et d’étudier analytiquement et numériquement l’architecture d’une buse d’éjection à double compartiments pour la production haute fréquence de capsules cœur-coque monodisperses. Elle s’inscrit dans la continuité d’une thèse terminée en 2023 qui a permis d’étudier, de caractériser en détails et de développer un modèle prédictif pour la génération de microcapsules monocouches uniquement par force centrifuge.
Les mécanismes de formation et d’éjection des capsules multicouches sont complexes. Ils font intervenir les propriétés rhéologiques du bio-polymère, la force centrifuge, la tension de surface et les interfaces. L’architecture de la buse d’éjection devra prendre en compte ces propriétés. Un premier volet de cette thèse sera de mieux comprendre les mécanismes de formation multicouche et d’éjection des microcapsules en fonction de la géométrie de la buse d’éjection sélectionnée et ainsi pouvoir prédire et contrôler cette formation en fonction des propriétés rhéologiques du/des bio-polymère(s). Un second volet sera le développement d’un système automatisé permettant la production aseptique des capsules. Enfin, une validation biologique permettra de valider la technologie développée. Pour répondre aux objectifs de ce sujet d’étude, le candidat devra dans un premier temps mener une étude analytique et numérique, dessiner les buses d’éjection et s’appuyer sur le savoir-faire du laboratoire pour les fabriquer. Il fera des tests fluidiques sur des maquettes et optimiser le design afin de concevoir et tester un prototype de formation de microcapsules.
Le candidat doit avoir une formation en physique, en ingénierie et en mécanique des fluides avec un talent particulier pour les approches expérimentales. Une première expérience en microfluidique / biologie serait un atout.

Amélioration des performances des CMOS par l’optimisation conjointe de la lithographie et du design

Lors du développement de nouvelles technologies (ex. FDSOI 10nm), les règles de dessin constituent le « code de la route » du designer (DRM). Elles sont définies afin de prendre en compte les contraintes électriques - physiques des circuits ainsi que celles issues des procédés de patterning et de lithographie en particulier. Le monde des designers et celui des lithographes étant relativement séparé, ces règles de dessin ne sont souvent pas optimales (sous-estimation des capabilités de lithographie, méconnaissance de l’impact des règles sur les performances des CMOS).
L’objectif de cette thèse est de montrer que l’utilisation d’un jumeau numérique de lithographie peut permettre d’améliorer les performances des CMOS par co-optimisation du design et de la lithographie (DTCO).

Sur la base d’un cas pratique des technologies CMOS avancées et à l’aide d’un jumeau numérique de lithographie, il s’agira de
- Développer de nouvelles méthodes de caractérisation du domaine de validité d’un procédé de lithographie (hotspot prédiction)
- Confronter la pertinence des règles de dessin vis-à-vis de ce domaine de validité
- Quantifier l’impact de la lithographie au travers des règles de dessin sur les performances électriques des dispositifs.
- Identifier les limitations process ou design les plus significatives afin de les challenger

La thèse se déroulera au CEA-Leti à Grenoble, acteur reconnu pour l’excellence de ses travaux de recherche dans le domaine de la microélectronique. Plus précisément, l’étudiant(e) sera rattaché(e) au Laboratoire de PAtterning Computationnel (LPAC) qui explore l’amélioration des procédés de lithographie et de gravure en s’appuyant sur des outils numériques les plus avancés. L’étudiant aura accès à ces outils ainsi qu’aux moyens de caractérisation et de fabrication 300mm de la salle blanche du CEA-Leti. L’étudiant(e) sera amené(e) à publier et à partager ses travaux lors de différentes conférences internationales.

Constructions à sécurité CCA pour le FHE

Le chiffrement homomorphe (FHE) est un corpus de techniques cryptographiques permettant le calcul directement sur les chiffrés. Depuis ses débuts, il y a une quinzaine d’années, le FHE a fait l’objet de nombreuses recherches en vue d’améliorer son efficacité calculatoire. Toutefois, sur le plan de la sécurité, le FHE pose encore de nombreuses questions. En particulier, tous les FHE utilisés en pratique (BFV, BGV, CKKS et TFHE) n’atteignent que le niveau de sécurité CPA (qui permet essentiellement de se prémunir contre des adversaires dit passifs).

Ces dernières années, plusieurs travaux ont donc étudié la sécurité du FHE dans le régime au-delà de CPA et introduit de nouvelles notions de sécurité (CPAD, FuncCPA, vCCA, vCCAD, …). Ces travaux ont conduit à de nouvelles attaques, de nouvelles constructions et, globalement, une meilleure compréhension de la sécurité du FHE dans ce régime.

Concernant la sécurité CCA, des travaux très récents (2024) ont défini de nouvelles notions strictement plus forte que CCA1 et ont démontré qu’elles pouvaient en théorie être atteintes par des schémas FHE exacts ou approchés. Avec ces avancées comme point de départ, la présente thèse visera à concevoir de nouveau schémas cryptographiques pratiques offrant à la fois de la malléabilité et des propriétés de sécurité CCA, au moins pour des applications spécifiques.

Rôle de l'eau à l'interface d'un collage direct hydrophile

L'industrie microélectronique utilise de plus en plus la technologie du collage direct hydrophile pour réaliser des substrats et des composants innovants. Les équipes du CEA LETI sont leaders dans ce domaine depuis plus de 20 ans et proposent des études scientifiques et technologiques sur le sujet.
Le rôle clé de l'eau à l'interface de collage peut être mieux compris grâce à une nouvelle technique de caractérisation développée au CEA LETI. L'objectif de cette thèse est de confirmer ou d'infirmer les mécanismes physico-chimiques en jeu à l'interface de collage, en fonction des préparations de surface et des matériaux en contact.
Une grande partie de ce travail sera réalisée sur nos outils en salle blanche. La caractérisation de l'hydratation des surfaces par cette technique originale sera complétée par des caractérisations classiques telles que les mesures d'énergie d'adhésion et d'adhérence, les analyses FTIR-MIR et SIMS, et la réflectivité des rayons X à l'ESRF.

Architecture évolutive de clusters programmables basée sur un réseau sur puce (NoC) pour les applications d'IA futures

Contexte technique et scientifique
L'intelligence artificielle (IA) s'impose aujourd'hui comme un domaine majeur, touchant des secteurs variés tels que la santé, l'automobile, la robotique, et bien d'autres encore. Les architectures matérielles doivent désormais faire face à des exigences toujours plus élevées en matière de puissance de calcul, de faible latence et de flexibilité. Le réseau sur puce (NoC, Network-on-Chip) est une technologie clé pour répondre à ces défis, offrant une interconnexion efficace et scalable au sein de systèmes multiprocesseurs. Cependant, malgré ses avantages, la conception de NoC pose des défis importants, notamment en termes d'optimisation de la latence, de la consommation d’énergie et de l’évolutivité.
Les architectures de clusters programmables s'avèrent particulièrement prometteuses pour l'IA, car elles permettent d’adapter les ressources en fonction des besoins spécifiques des algorithmes d'apprentissage profond et d'autres applications d'IA intensives. En combinant la modularité des clusters avec les avantages des NoC, il est possible de concevoir des systèmes capables de traiter des charges de travail d'IA toujours plus importantes, tout en assurant une efficacité énergétique et une flexibilité maximales.
Description du Sujet
Le sujet de thèse propose la conception d'une architecture de cluster programmable, scalable, basée sur un réseau sur puce, dédiée aux futures applications d'IA. L'objectif principal sera de concevoir et d'optimiser une architecture NoC qui permettra de répondre aux besoins des applications d'IA en termes de calcul intensif et de transmission de données efficace entre les clusters de traitement.
Les travaux de recherche se concentreront sur les aspects suivants :
1. Conception de l'architecture NoC : Développer un réseau sur puce évolutif et programmable qui permette de connecter de manière efficace les différents clusters de traitement de l’IA.
2. Optimisation des performances et de l'efficacité énergétique : Définir des mécanismes pour optimiser la latence et la consommation d'énergie du système, en fonction de la nature des charges de travail d'IA.
3. Flexibilité et programmabilité des clusters : Proposer une architecture modulaire et programmable permettant d’allouer les ressources de manière dynamique selon les besoins spécifiques de chaque application d'IA.
4. Évaluation expérimentale : Implémenter et tester des prototypes de l'architecture proposée pour valider ses performances sur des cas d’utilisation concrets, tels que la classification d'images, la détection d'objets ou le traitement de données en temps réel.
Les résultats de cette recherche pourront contribuer à l’élaboration de systèmes embarqués et de solutions d’IA de pointe, optimisés pour les nouvelles générations d'applications et d’algorithmes d'intelligence artificielle.
Les travaux seront valorisés à travers la rédaction de publications scientifiques dans des conférences et des journaux, ainsi que potentiellement des brevets.

Top