Dynamique de fracture dans des technologies de transfert de couches cristallines
Le Smart Cut™ est une technologie découverte au CEA et désormais utilisée industriellement pour la fabrication de substrats avancés pour l'électronique. Cependant, les phénomènes physiques mis en jeu dans sa mise en œuvre font encore l'objet de nombreuses études au CEA. Dans le Smart Cut™, une fine couche de matériau est transférée d'une plaquette à l'autre en utilisant une étape clé de recuit de fracture durant laquelle une fracture macroscopique s'initie et se propage à plusieurs km/s [i].
____________
L'amélioration de la technologie nécessite une solide compréhension des phénomènes physiques impliqués dans l'étape de fracture. L'objectif de ce projet de doctorat est donc d'étudier les mécanismes impliqués dans l'initiation et la propagation des fractures, ainsi que les vibrations post-fracture.
____________
Sur le site du CEA-Grenoble, avec un intérêt industriel, l'étudiant utilisera et développera les dispositifs expérimentaux existants pour étudier le comportement de la fracture dans les matériaux fragiles, y compris les réflexions laser optiques [iv], l'imagerie synchrotron diffractante résolue dans le temps [iii], et l'imagerie directe ultra-rapide [ii].
En outre, des algorithmes d'analyse de données basés sur python seront développés pour extraire des informations quantitatives des différents ensembles de données. Cela permettra à l'étudiant de déterminer les mécanismes impliqués et d'évaluer l'influence des paramètres de traitement des plaquettes sur le comportement de la fracture, et donc de proposer des méthodes d'amélioration.
Références :
[i] https://pubs.aip.org/aip/apl/article/107/9/092102/594044
[ii] https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024068
[ii] https://journals.iucr.org/j/issues/2022/04/00/vb5040/index.html
[iv] https://pubs.aip.org/aip/jap/article/129/18/185103/158396
Détection micro-onde champ proche en milieux hétérogènes
Cette thèse porte sur le développement de techniques de détection en champ proche par micro-ondes pour des applications en biomédecine, agronomie et géophysique. L'objectif principal est de concevoir des algorithmes peu complexes qui résolvent efficacement des problèmes inverses liés à la caractérisation et à la détection des propriétés diélectriques avec diverses distributions géométriques dans des milieux hétérogènes.
Le candidat commencera par effectuer une revue complète des méthodes existantes de détection radar et de traitement du signal avancé. Un modèle physique précis de la propagation des micro-ondes en champ proche sera élaboré, servant de base à de nouvelles méthodes de détection basées sur le concept de tomographie itérative pilotée par la physique. L'objectif final est de formuler des algorithmes efficaces, adaptés aux applications en temps réel, et de les valider par une mise en œuvre expérimentale. À cette fin, un prototype évolutif sera développé, passant de milieux 2D à des scénarios 3D plus complexes.
Ce projet interdisciplinaire combine la modélisation physique, le développement d'algorithmes et l'expérimentation pratique. Il offre l'opportunité de faire progresser le domaine de l'imagerie par micro-ondes, avec des implications majeures pour les applications biomédicales et environnementales.
Alimentation à haut niveau d'isolement
Avec l’évolution rapide des technologies et les défis croissants en matière de miniaturisation et de gestion des ressources, les convertisseurs de puissance doivent faire face à des exigences de performance de plus en plus strictes. Pour répondre à ces besoins, l’utilisation de semi-conducteurs à large bande interdite, tels que le SiC (carbure de silicium) et le GaN (nitrure de gallium), devient de plus en plus courante. Ces matériaux permettent d’augmenter significativement la vitesse de commutation des convertisseurs, réduisant ainsi les pertes et améliorant leur efficacité.
Cependant, cette rapidité de commutation engendre des défis supplémentaires : la raideur des fronts de commutation peut provoquer des courants parasites qui perturbent les commandes des interrupteurs. Pour contrer ces effets indésirables, il est nécessaire d'utiliser des drivers d’interrupteurs offrant un niveau d’isolation élevé. La solution traditionnelle repose sur des transformateurs magnétiques hautes fréquences, mais ces dispositifs présentent un coût élevé, un encombrement significatif et une isolation limitée.
L’objectif de cette thèse est de concevoir une nouvelle solution pour l’alimentation des drivers de composants grand-gap, en remplaçant les transformateurs magnétiques par des transformateurs piézoélectriques. Cette approche innovante vise à réduire les coûts, l’encombrement et améliorer l’efficacité globale des systèmes de conversion de puissance.
Encadrement et Ressources : le candidat sélectionné travaillera au sein d'une équipe de recherche de pointe, reconnue pour son expertise dans le domaine de la conversion de puissance par résonateurs piézoélectriques. L'équipe dispose des ressources et du savoir-faire nécessaires pour soutenir le développement et la validation de cette technologie novatrice.
Identification versus anonymisation depuis un client embarqué opérant sur une blockchain
Le premier déploiement d’une blockchain à l’échelle de la planète date de 2010 avec Bitcoin, qui introduit un système monétaire complètement numérique et une crypto-monnaie, le bitcoin. Au sein de Bitcoin, toutes les transactions sont publiquement accessibles et traçables, ce qui devrait générer de la confiance entre les acteurs. Mais la traçabilité des transactions, in fine de la crypto-monnaie, n’implique pas la traçabilité des utilisateurs authentifiés par une adresse de compte, ou plus exactement par un ensemble d’adresses de compte indépendantes les unes des autres. Dans ce contexte, il peut s’avérer complexe de remonter aux personnes physiques ou morales détentrices de crypto-monnaie.
La crypto-monnaie n’est pas le seul cas d’usage supporté par la technologie blockchain. Le déploiement d’Ethereum en 2014, s’appuyant sur l’usage de smart contracts, a ouvert à beaucoup d’autres usages, en particulier la protection des données identifiantes. Dans ce domaine, les besoins de traçabilité, versus de furtivité, peuvent être très différents d’un cas d’usage à un autre. Par exemple, sur une blockchain qui enregistre l’accès d’un travailleur munis d’un certificat de travail, à un site industriel, aucune information permettant d’identifier le travailleur ou de tracer son activité ne devra figurer. En revanche, dans le cas de données collectées par des capteurs IoT et traitées par des dispositifs Edge distants, la traçabilité des données et des traitements est souhaitable.
La thèse propose d’étudier différentes techniques de traçabilité des avoirs numériques sur une blockchain, de furtivité de leurs possesseurs, ainsi que de la possibilité d’audit et d’identification par un organisme habilité. La finalité est de construire des dispositifs embarqués, Edge ou personnels embarquant possiblement une intelligence artificielle, sécurisés par des composants matériels, intégrant différentes solutions cryptographiques et structures de wallet pour répondre aux besoins de différents cas d’usage envisagés.
Developpement de matériaux de barrière auto-formants pour interconnexions BEOL avancées
Contexte : Avec la miniaturisation des dispositifs électroniques et l'introduction de nœuds technologiques avancés inférieurs à 10 nm, la fiabilité des interconnexions en cuivre (Cu) devient un enjeu central pour maintenir les performances des dispositifs microélectroniques. Ces interconnexions doivent non seulement garantir une conductivité optimale, mais aussi résister à la diffusion et à la délamination. Traditionnellement, des barrières de diffusion à base de tantale (Ta/TaN) sont utilisées pour empêcher la diffusion du cuivre dans le diélectrique. Cependant, à mesure que les dimensions des dispositifs diminuent, l'incorporation de ces barrières devient de plus en plus complexe, même avec des techniques avancées comme le dépôt de couches atomiques (ALD), car l'épaisseur de la barrière doit être réduite à quelques nanomètres. Pour relever ce défi, une alternative prometteuse émerge avec les barrières auto-formantes (Self-Forming Barriers, SFB). Ce procédé utilise des alliages de cuivre enrichis en éléments tels que le manganèse (Mn), le titane (Ti), l'aluminium (Al) ou le zinc (Zn), qui migrent à l'interface Cu-dielectrique pour former une barrière ultra-fine. Cette solution simplifie le processus de fabrication tout en minimisant la résistance électrique des interconnexions.
Projet de thèse : Le candidat au doctorat rejoindra une équipe de recherche multidisciplinaire pour explorer et optimiser les matériaux pour la réalisation de SFBs en utilisant des alliages de Cu. Les axes principaux incluent :
• Sélection et caractérisation des matériaux : Développer et analyser des films minces d'alliages de Cu par des méthodes électrochimiques et/ou PVD pour étudier leur microstructure et leur morphology.
• Formation de barrière : Contrôler la migration des alliages à l'interface Cu/dielectrique lors de l'annealing thermique et évaluer l'efficacité de la barrière.
• Propriétés électriques et mécaniques : Évaluer l'impact des SFB sur la résistance électrique, l'électromigration et la délamination, en particulier lors de tests accélérés.
Compétences requises : Diplôme de Master en électrochimie ou en science des matériaux avec un fort intérêt pour la recherche appliquée. Un intérêt prononcé pour le travail expérimental, des compétences en dépôt de films minces, électrochimie et caractérisation des matériaux (AFM, SEM, XPS, XRD, SIMS). Vous devez être capable de mener des recherches bibliographiques et d'organiser votre travail de manière efficace.
Environnement de travail : Le candidat travaillera au sein d'une équipe pluridisciplinaire et aura accès à des installations de pointe de 200/300 mm, il participera au projet NextGen du CEA sur des interconnexions avancées pour des applications à haute fiabilité.
Fonctions avancées de monitoring des transistors de puissance (vers la fiabilisation et augmentation de la durée de vie des convertisseurs de puissance pour l’énergie)
Afin d’augmenter la puissance des systèmes électroniques, une approche courante est de paralléliser des composants au sein de modules. Cependant, cette parallélisation est compliquée par la dispersion des paramètres des transistors, tant initiaux que post-vieillissement. Les commutations rapides des composants WBG (semi-conducteurs à large bande interdite) nécessitent souvent des ralentissements pour éviter des suroscillations et des destructions.
Un schéma de pilotage intelligent, incluant une commande ajustée, un contrôle des paramètres internes des circuits et des dispositifs, ainsi qu'une boucle de rétroaction, pourrait améliorer la fiabilité, la durée de vie et réduire les risques de casse.
Les objectifs de la thèse seront de développer, étudier et analyser les performances de fonction de contrôle et pilotage de composants de puissance, tels le carbure de silicium (SiC) ou le nitrure de gallium (GaN), qui pourraient à terme être implémenté dans un circuit intégré dédié (type ASIC).
Ce sujet de thèse vise à résoudre des problèmes critiques dans la parallélisation de composants de puissance, contribuant ainsi à l'éco-innovation en augmentant la durée de vie des modules de puissance.
Sondage de circuits intégrés par faisceau électronique
La conception des circuits intégrés nécessite, en fin de chaîne, des outils d'édition de circuit et d'analyse de défaillance. Parmi ces outils, le sondage de niveaux de potentiels électriques par utilisation d'un faisceau électronique disponible dans un MEB (Microscope Electronique à Balayage) permet de connaitre le signal électrique présent dans une zone du circuit, cette zone pouvant être un niveau de métal ou un transistor. Cette technique de sondage électronique a été très utilisée dans les années 90, puis partiellement abandonnée malgré quelques publications récurrentes sur cette technique. Les dernières années ont remis au gout du jour cette technique par utilisation de la face arrière du composant, le sondage se faisant via le substrat de silicium et l'accès aux zones actives du composant.
Ces outils de débogage et d'analyse de défaillance sont aussi des outils pour attaquer les circuits intégrés. Ce sujet de thèse s'inscrit dans le cadre de la cybersécurité matérielle et notamment des risques liés aux attaques dites invasives. Le doctorant mettra en œuvre cette technique de sondage par faisceau électronique sur des MEB commerciaux et dans des conditions d'utilisation propre à la cybersécurité. Il sera envisagé différentes techniques pour améliorer les signaux sondés, pour comprendre les risques et se prémunir de leur exploitation, notamment par l'utilisation et le détournement d'un MEB de table qui rendrait l'attaque "low-cost".
Structuration 3D complexes à base d’origamis d’ADN
L'évolution rapide des nouvelles technologies, telles que les voitures autonomes ou les énergies renouvelables, nécessite la réalisation de structures de plus en plus complexes. Pour cela, il existe aujourd’hui de nombreuses techniques de structuration de surface. En microélectronique, la lithographie optique est la méthode de référence permettant d’obtenir des motifs micro- et nanométriques. Cependant, elle reste limitée dans la diversité des formes réalisables.
Au cours des dernières années, une approche prometteuse a été développée au sein des laboratoires du CBS (INSERM à Montpellier) et CEA Leti (Grenoble) : l’assemblage des origamis d'ADN. Cette technologie exploite les propriétés d'auto-assemblage de cette chaine de polymères qu’est l’origami ADN. L’organisation des origamis d’ADN de taille nanométrique permet de former in fine des structures d’une dimension micrométrique. L'objectif de cette thèse est d'explorer de nouvelles perspectives en combinant des origamis 2D et 3D pour créer des structures inédites. Ces motifs pouvant présenter un grand intérêt pour des applications dans les domaines tel que l’optique ou encore l’énergie.
Transmission de puissance et de données via un lien acoustique pour les milieux métalliques clos
Ce sujet de thèse se positionne sur les thématiques de transmission de puissance et de données à travers des parois métalliques en utilisant les ondes acoustiques. Cette technologie permettra à terme l’alimentation, la lecture et la commande de systèmes placés dans des zones enfermées dans du métal : réservoirs sous pression, coques de navires et sous-marins, …
Les ondes électromagnétiques étant absorbées par le métal, il est nécessaire de recourir aux ondes acoustiques pour communiquer des données ou de la puissance au travers de parois métalliques. Celles-ci sont générées par des transducteurs piézoélectriques collés de part et d’autre de la paroi. Les ondes acoustiques sont peu atténuées par le métal, ce qui se traduit par de nombreuses réflexions et des trajets multiples.
L'enjeu de la thèse sera de réaliser un démonstrateur de technologie, robuste, permettant la télé-alimentation et la communication de données acoustiques à travers des parois métalliques. Ces travaux s’appuieront sur une modélisation avancée du canal acoustique afin d’optimiser les performances du dispositif de transmission de puissance et de données. Il s’agira également de développer des briques électroniques innovantes permettant de déterminer et de maintenir une fréquence de transmission de puissance optimale, impactée par les conditions environnementales et typiquement par la température.
Le but ultime de cette thèse sera le développement et l'implémentation d'un système de communication embarqué dans un FPGA et/ou microcontrôleur afin d’envoyer des données capteurs à travers une paroi métallique d’épaisseur variable. Les limitations dues aux imperfections du canal et de l'électronique seront à l'origine de l'invention d'une grande quantité de méthodes et systèmes de compensation dans le domaine numérique et/ou analogique. Un travail devra également être réalisé sur le choix des transducteurs piézoélectriques et la caractérisation du canal, en lien avec les activités autour des ondes acoustiques du laboratoire travaillant sur la transmission de puissance acoustique.
Pour candidater à cette offre, envoyer un mail à Nicolas Garraud (nicolas.garraud@cea.fr) et Esteban Cabanillas (esteban.cabanillas@cea.fr).
Intégrité, disponibilité et confidentialité de l'IA embarquée dans les étapes post-apprentissage
Dans un contexte de régulation de l'IA à l'échelle européenne, plusieurs exigences ont été proposées pour renforcer la sécurité des systèmes complexes d'IA modernes. En effet, nous assistons à un développement impressionnant de grands modèles (dits modèles de "Fondation") qui sont déployés à grande échelle pour être adaptés à des tâches spécifiques sur une large variété de plateformes. Aujourd'hui, les modèles sont optimisés pour être déployés et même adaptés sur des plateformes contraintes (mémoire, énergie, latence) comme des smartphones et de nombreux objets connectés (maison, santé, IoT industriel, ...).
Cependant, la prise en compte de la sécurité de tels systèmes d'IA est un processus complexe avec de multiples vecteurs d'attaque contre leur intégrité (tromper les prédictions), leur disponibilité (dégrader les performances, ajouter de la latence) et leur confidentialité (rétro-ingénierie, fuite de données privées).
Au cours de la dernière décennie, les communautés de l'Adversarial Machine Learning et du Privacy-Preserving Machine Learning ont franchi des étapes importantes en caractérisant de nombreuses attaques et en proposant des schémas de défense. Les attaques sont essentiellement centrées sur les phases d'entraînement et d'inférence, mais de nouvelles menaces apparaissent, liées à l'utilisation de modèles pré-entraînés, leur déploiement non sécurisé ainsi que leur adaptation (fine-tuning).
Des problèmes de sécurité supplémentaires concernent aussi le fait que les étapes de déploiement et d'adaptation peuvent être des processus "embarqués" (on-device), par exemple avec l'apprentissage fédéré inter-appareils (cross device Federated Learning). Dans ce contexte, les modèles sont compressés et optimisés avec des techniques de l'état de l'art (par exemple, la quantification, le pruning ou Low Rank Adaptation - LoRA) dont l'influence sur la sécurité doit être évaluée.
La thèse se propose de (1) définir des modèles de menaces propres au déploiement et à l'adaptation de modèles de fondation embarqués (e.g., sur microcontrôleurs avec accélérateur HW, SoC); (2) démontrer et caractériser des attaques avec un intérêt particulier pour les attaques par empoisonnement de modèles; (3) proposer et développer des protections et des protocoles d'évaluation.