Acoustique et Electromagnétisme (AEM) : Nouvelles approches pour la caractérisation sécuritaire des composants de type SoCs

Des travaux menés au sein du CEA-Leti ont montré que les attaques physiques peuvent être une menace pour les mécanismes de sécurité des SoC (System on Chips). En effet, les injections de fautes par perturbation électromagnétique ont déjà conduit à une escalade de privilèges en s'authentifiant avec un mot de passe illégitime, ou plus récemment ont permis de contourner l'un des plus hauts niveaux de sécurité d'un SoC, qui est le Secure Boot. Cependant, les technologies intégrées dans ce type de cibles sont de plus en plus sophistiquées avec des dispositifs électroniques Package-on-Package (PoP) et des nœuds technologiques inférieurs ou égaux à 7 nm, comme le nouveau Samsung S20. La mise en œuvre de ces attaques nécessite des équipements de pointe non disponibles commercialement à ce jour (sonde de très petit diamètre, générateur d'impulsions de courant transitoire élevé, magnétomètre et capteurs de courant large bande à haute résolution spatiale, etc.). La thèse soutenue en 2022 par Clément Gaine [1] au sein de notre équipe a permis d'étudier plusieurs composants de la chaîne d'injection EM, notamment un élément principal comme la sonde d'injection électromagnétique. D’autres domaines sont à explorer, notamment la chaîne d’injection complète depuis le générateur d’impulsions jusqu’à la création d’une force électromotrice dans la cible, induite par la sonde EM via des gradients de courant très élevés (di/dt). La maîtrise de la chaîne complète permet de concevoir le système d’injection le plus adapté pour caractériser une cible de type smartphone et résoudre les verrous liés à ce type de cible tels que : la microarchitecture complexe, la pile logicielle multicouche, le packaging complexe avec notamment l’empilement de plusieurs composants sur une même puce (PoP).
L’objectif principal de cette thèse est d'étudier une nouvelle approche d’injection EM et son potentiel de contournement de certains mécanismes de sécurité d'un smartphone. Cela permettra de faire évoluer les outils de caractérisation en sécurité matérielle afin de répondre aux besoins croissants de la caractérisation sécuritaire des SoCs. En termes d’exploitation, le domaine FORENSIC est visé pour contourner et/ou compléter les limites des techniques de fouilles légales de données basées sur les vulnérabilités « 0-day » par l’exploitation de failles des implémentations matérielles qui ne peuvent être corrigées sur le même modèle de cible.
Pour atteindre cet objectif, le doctorant devra dans un premier temps caractériser, tester et valider la nouvelle approche d’attaque par commutation ultra-rapide et les moyens de mesures magnétométriques et ampérométriques récemment développés au laboratoire. En parallèle, le doctorant réalisera des travaux bibliographiques et expérimentaux sur le risque physiologique potentiellement lié à l’exposition à des impulsions EM de courte durée. Les résultats serviront à définir de nouveaux protocoles permettant aux opérateurs de réaliser leurs expériences d’injection EM dans un environnement sécurisé et à développer des standards dans ce domaine si nécessaire. Dans un second temps, le doctorant consacrera une partie de ses travaux à la modélisation du flux magnétique transitoire et du transfert de puissance induite dans des cibles à haute ou basse impédance, en s’intéressant à l’impact de l’orientation du champ ainsi que de la polarité de l’impulsion sur le modèle de défaut ou de glitch sur différents types de transistors (NMOS, PMOS, JFET).

[1] https://cea.hal.science/search/index/?q=*&authFullName_s=Cl%C3%A9ment%20Gaine
Plus d'information : https://vimeo.com/441318313 (video projet)

Attaque par réutilisation de code : génération d'exploits automatiques et protections

Les vulnérabilités logicielles dues à des erreurs de gestion de la mémoire sont parmi les plus faciles à exploiter. Pour empêcher un attaquant d'injecter son propre code arbitraire (shellcode), les systèmes modernes appliquent généralement une prévention de l'exécution des données (DEP), souvent mise en œuvre sous la forme de permissions de segment (Write xor Execute - W^E).
Cependant, des attaques par réutilisation de code sont apparues pour contourner les protections DEP. Grâce à un problème de logique de mémoire, l'attaquant détourne le flux de contrôle du programme cible et enchaîne de petits fragments de code appelés gadgets pour construire le comportement souhaité, par le biais de la programmation orientée retour (ROP) ou de la programmation orientée saut (JOP).
Au cours des dernières années, plusieurs travaux de recherche ont exploré les moyens d'automatiser la construction d'attaques par réutilisation de code à partir d'attaques de base « sur la pile », abaissant ainsi la barrière à ces méthodes avancées. D'autre part, la protection des programmes repose sur divers mécanismes tels qu'une disposition aléatoire de la mémoire (par exemple, la randomisation de la disposition de l'espace d'adressage - ASLR), l'intégrité du flux de contrôle (CFI) ou un mécanisme de protection de la pile (par exemple, Shadow Stack) pour tenir l'attaquant en échec. Certaines de ces protections peuvent toutefois être coûteuses à mettre en œuvre (temps d'exécution, matériel spécialisé, etc.).

L'objectif général de cette thèse est d'améliorer l'état de l'art de la génération automatique d'exploits dans le but d'évaluer la sécurité de la protection contre la réutilisation des codes. Nous suivrons deux tendances :
(1) d'une part, le candidat fera progresser les méthodes d'automatisation de la réutilisation de code, en prenant en compte la connaissance de la protection pour guider la recherche vers des exploits valides uniquement, en coupant proactivement dans l'espace de recherche, et en recherchant des synergies entre le chaînage ROP/JOP et les méthodes de synthèse de programme telles que la synthèse guidée par la syntaxe ou les méthodes de synthèse stochastiques ;
(2) d'autre part, une fois que le potentiel de ces méthodes sera mieux compris, le candidat concevra une défense efficace contre elles, sur la base d'une analyse complète de leurs principales forces et faiblesses.

Top