Apprentissage des modèles du monde pour les agents autonomes avancés
Les modèles du monde sont des représentations internes de l'environnement externe qu'un agent peut utiliser pour interagir avec le monde réel. Ils sont essentiels pour comprendre les lois physiques qui régissent les dynamiques du monde réel, faire des prédictions et planifier des actions à long terme. Les modèles du monde peuvent être utilisés pour simuler des interactions réelles et améliorer l'interprétabilité et l'explicabilité du comportement d'un agent dans cet environnement, ce qui en fait des composants clés pour les modèles avancés d'agents autonomes.
Néanmoins, la construction d'un modèle du monde précis reste un défi. L'objectif de cette thèse de doctorat est de développer une méthodologie pour apprendre les modèles du monde et étudier leur utilisation dans le contexte de la conduite autonome, en particulier pour la prévision des mouvements et le développement d'agents autonomes pour la navigation.
Implémentation matérielle/logicielle sécurisée et agile des nouveaux algorithmes de signature numérique en cryptographie post-quantique
La cryptographie joue un rôle fondamental dans la sécurisation des systèmes de communication modernes en garantissant la confidentialité, l'intégrité et l'authenticité. La cryptographie à clé publique, en particulier, est devenue indispensable pour sécuriser les processus d’échange de données et d’authentification. Cependant, l’avènement de l’informatique quantique constitue une menace pour de nombreux algorithmes cryptographiques à clé publique traditionnels, tels que RSA, DSA et ECC, qui reposent sur des problèmes tels que la factorisation entière et les logarithmes discrets que les ordinateurs quantiques peuvent résoudre efficacement. Conscient de ce défi imminent, le National Institute of Standards and Technology (NIST) a lancé en 2016 un effort mondial pour développer et normaliser la cryptographie post-quantique (PQC). Après trois rondes d'évaluations, le NIST a annoncé son premier ensemble d'algorithmes standardisés en 2022. Bien que ces algorithmes représentent un progrès significatif, le NIST a exprimé un besoin explicite de cryptosystèmes supplémentaires qui exploitent des hypothèses de sécurité alternatives et a ouvert un nouveau concours dédié aux nouvelles signatures.
À mesure que la communauté cryptographique s’oriente vers l’adoption de cette nouvelle cryptographie, un défi majeur réside dans leur déploiement efficace dans des systèmes réels. Les implémentations matérielles, en particulier, doivent répondre à des exigences strictes en matière de performances, de consommation d'énergie et de coût, tout en offrant la flexibilité nécessaire pour s'adapter à plusieurs algorithmes, qu'ils soient standardisés ou encore en cours d'évaluation. Une telle agilité est essentielle pour pérenniser les systèmes face à l’incertitude inhérente aux transitions cryptographiques. L'objectif principal de cette thèse sera de concevoir et de développer des implémentations matérielles agiles pour des algorithmes de signature numérique post-quantique. Cela implique une étude approfondie des principaux candidats du quatrième tour du concours du NIST, ainsi que de ceux déjà standardisés, afin de comprendre leurs formalismes, leurs propriétés de sécurité et leurs bottlenecks. La thèse explorera également les optimisations pour l'efficacité des ressources, en équilibrant les compromis entre performances, consommation d'énergie et surface. De plus, la résilience contre les attaques physiques (attaques par canaux cachés et par injection de fautes) sera un élément clé du processus de conception.
Ce projet de thèse sera mené au sein du projet PEPR PQ-TLS en collaboration avec le laboratoire TIMA (Grenoble), l'Agence nationale de la sécurité des systèmes d'information (ANSSI) et l'INRIA.
Radars passifs distribués
L'objectif de cette thèse consiste à détecter et localiser des drones pénétrant dans une zone urbaine à protéger grâce à l’observation des signaux émis par les stations cellulaires.
Des études ont montrées qu’il était possible de localiser un drone s’il était proche du système d’écoute et de la station cellulaire (i.e. la station de base). Quand la situation est plus complexe (i.e. il n’y a pas de trajet direct entre la station cellulaire et le radar ou en présence de plusieurs stations cellulaires émettrices causant un fort niveau d’interférence), un seul système d’écoute dit radar passif ne peut détecter et localiser correctement le drone.
Pour s’affranchir de ces conditions difficiles, nous souhaitons distribuer ou déployer sur la zone à protéger un ensemble de radars passifs à faible complexité qui exploitent de façon optimale les signaux émis par ces stations cellulaires. Une stratégie de distribution et de déploiement de radars passifs est alors à considérer en prenant en compte les positions des stations cellulaires émettrices. La possibilité d’échanger des informations entre les radars passifs doit également être envisagée afin de mieux gérer les interférences liées aux stations cellulaires.
Le candidat devra faire état d’une formation de niveau Master 2 à dominante traitement numérique du signal. De bonnes connaissances en télécoms, radar et propagation sont recommandées.
L’étudiant sera accueilli au CEA Grenoble dans une équipe d’experts en traitement du signal pour les télécommunications (http=s://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/plateforme-telecommunications.aspx)
Support logiciel pour calcul clairsemé
Les performances des calculateurs sont devenues limitées par les déplacements des données dans les domaines de l'IA, du HPC comme dans l'embarqué. Il existe pourtant des accélérateurs matériels qui permettent de traiter des mouvements de données de façon efficace énergétiquement, mais il n'existe pas de langage de programmation qui permette de les mettre en œuvre dans le code supportant les calculs.
C'est au programmeur de configurer explicitement les DMA et utiliser des appels de fonctions pour les transferts de données et analyser les programmes pour en identifier les goulots d'étranglement mémoire.
Par ailleurs les compilateurs ont été conçus dans les années 80, époque à laquelle les mémoires travaillaient à la même fréquence que les cœurs de calcul.
L'objet de cette thèse sera d'intégrer dans un compilateur la possibilité de réaliser des optimisations basées sur les transferts de données.
Modélisation des Signatures Électromagnétiques dans un Scénario à Trajets Multiples pour la Reconnaissance d'Objets et le SLAM Radio Sémantique
Contexte:
La vision des futurs réseaux de communication sans fil envisage des services de positionnement et de localisation extrêmement précis dans des environnements intérieurs et extérieurs, en parallèle avec les services de communication (Joint Communication and Sensing- JCAS). Avec l'utilisation généralisée des technologies radar, le concept de Simultaneous Localization and Mapping (SLAM) a récemment été adapté aux applications en radiofréquences. Les premières démonstrations de faisabilité ont été réalisées en environnements intérieurs, produisant des cartes 2D basées sur des signaux rétrodiffusés aux ondes millimétriques (mmWave) ou en THz. Ces mesures permettent de fournir des données de détection, ouvrant la voie au développement de modèles complexes qui détaillent l'emplacement précis, la taille et l'orientation des objets cibles, ainsi que leurs propriétés électromagnétiques et leur composition matérielle.
Au-delà de la simple reproduction de cartes, l'intégration de la reconnaissance et du positionnement d'objets dans l'environnement peut ajouter une couche sémantique à ces applications. Bien que le SLAM sémantique ait été exploré avec des technologies basées sur des capteur vidéo, son application aux radiofréquences reste un domaine de recherche émergent nécessitant des modèles électromagnétiques précis des signatures des objets et de leurs interactions avec l'environnement. Des études récentes ont développé des modèles basés sur l'optique physique itérative et des courants équivalents pour simuler la signature multistatique en espace libre d'objets proches.
Thèse de doctorat:
L'objectif de cette thèse est d'étudier et de modéliser la rétrodiffusion des objets dans un scénario à trajets multiples, afin d'obtenir une imagerie précise et une reconnaissance des objets (y compris leurs propriétés matérielles). Le travail consistera à développer un modèle mathématique pour la rétrodiffusion des objets détectés dans l'environnement, à l'appliquer au SLAM 3D et à atteindre des objectifs de reconnaissance et de classification des objets. Ce modèle devra intégrer les effets en champ proche et en champ lointain tout en prenant en compte l'impact de l'antenne sur le canal radio global.
L'étude soutiendra la conception conjointe des systèmes d'antennes et des techniques de traitement associées (filtrage et imagerie) nécessaires à l'application.
Le doctorant fera partie du Laboratoire Antennes, Propagation et Couplage Inductif du CEA-LETI, à Grenoble (France). Il bénéficiera d'installations de pointe (sondeurs de voies, émulateur, logiciel OTA et simulateur électromagnétique).
La thèse se déroulera en partenariat avec l'Université de Bologne.
Application:
Le poste est ouvert aux étudiant.e.s exceptionnels titulaires d’un Master of Science, d’une école d’ingénieur ou équivalent. Le/la étudiant.e doit avoir une spécialisation dans le domaine des télécommunications, des micro-ondes et/ou du traitement du signal. Le dossier de candidature doit obligatoirement comprendre un CV, une lettre de motivation et les notes des deux dernières années d'études.
Conception innovante de circuit radiofréquence basée sur une approche de co-optimisation technology-système
Ce sujet de thèse adresse les deux grands défis de l’Europe d’aujourd’hui pour l’intégration des systèmes de communication du futur. Il s’agit de concevoir des circuits intégrés RF en technologie 22nm FDSOI dans les bandes de fréquences dédiées à la 6G permettant non seulement d’augmenter les débits mais aussi de réduire l’empreinte carbone des réseaux de télécommunications. En parallèle, il est primordial de réfléchir à l’évolution des technologies silicium qui permettraient d’améliorer l’efficacité énergétique et l’efficacité de ces circuits. Ce travail sera mené en apportant une réflexion sur la méthodologie de conception des systèmes radiofréquences.
Dans le cadre de la thèse, l'objectif sera décomposé en trois phases. Il faudra d’abord se doter d’outils de simulation, préfigurant les performances de la future technologie FDSOI 10nm du Leti. Une deuxième étape consistera à identifier les architectures les plus pertinentes existant dans la littérature pour les domaines applicatifs envisagés pour la technologie. Un lien avec les projets amonts en télécommunications sera systématiquement établi pour que le candidat saisisse les enjeux des systèmes.
Enfin, afin de valider les concepts développés, la conception d’un LNA et d’un VCO dans le cadre d’un projet en cours dans le laboratoire sera proposée.
Le candidat s’intégrera dans une équipe conséquente qui travaille sur les nouveaux systèmes de communication et qui aborde à la fois les aspects d’étude architecturale, de modélisation et de conception de circuits intégrés. Le candidat devra disposer de compétences sérieuses en conception de circuits intégrés et en systèmes radiofréquence ainsi qu’une bonne aptitude à travailler en équipe.
Architectures de calcul thermodynamique scalables
Les problèmes d'optimisation à grande échelle sont de plus en plus fréquents dans des secteurs tels que la finance, le développement de matériaux, la logistique et l'intelligence artificielle. Ces algorithmes sont généralement réalisés sur des solutions matérielles comprenant des CPU et de GPU. Cependant, à grande échelle, cela peut rapidement se traduire par des temps de latence, de l'énergie et des coûts financiers qui ne sont pas viables. Le calcul thermodynamique est un nouveau paradigme de calcul dans lequel des composants analogiques sont couplés dans un réseau physique. Il promet des implémentations extrêmement efficaces d'algorithmes tels que le recuit simulé, la descente de gradient stochastique et la chaîne de Markov Monte Carlo en utilisant la physique intrinsèque du système. Cependant, il n'existe pas de vision réaliste d'un calculateur thermodynamique programmable et scalable. C'est ce défi ambitieux qui sera abordé dans ce sujet de thèse. Des aspects allant du développement de macroblocs de calcul, de leur partitionnement et de leur interfaçage avec un système numérique à l'adaptation et à la compilation d'algorithmes pour le matériel thermodynamique peuvent être considérés. Un accent particulier sera mis sur la compréhension des compromis nécessaires pour maximiser la scalabilité et la programmabilité des calculateurs thermodynamiques sur des benchmarks d'optimisation à grande échelle et leur comparaison avec des implémentations sur du matériel numérique conventionnel.
Vers une plateforme d’irradiation photonique multimodale : fondements et conceptualisation
Les techniques d’irradiation photonique exploitent les interactions entre un faisceau de photons de haute énergie et la matière pour effectuer des mesures non destructives. En induisant des réactions photonucléaires, telles que l’activation photonique, les résonances de fluorescence nucléaire (NRF) et la photofission, ces techniques d’irradiation permettent de sonder la matière en profondeur. L’association de ces différentes techniques de mesure nucléaire au sein d’une plateforme d’irradiation unique permettrait une identification précise et quantitative d’une grande variété d’éléments, en sondant le volume des matériaux ou objets étudiés. Le faisceau de photons de haute énergie est généralement produit par rayonnement de freinage (phénomène de Bremsstrahlung) au sein d’une cible de conversion d’un accélérateur linéaire d’électrons. Une alternative innovante consiste à exploiter les électrons de haute énergie délivrés par une source laser-plasma, convertis par rayonnement de freinage ou par diffusion Compton inverse. Une plateforme basée sur une telle source offrirait de nouvelles possibilités, car les sources laser-plasma peuvent atteindre des énergies significativement supérieures, permettant ainsi l'accès à de nouvelles techniques et applications d'imagerie avancées. L’objectif de cette thèse est d’établir les fondements et de conceptualiser une plateforme d’irradiation photonique multimodale. Un tel dispositif viserait à se baser sur une source laser-plasma et permettrait la combinaison des techniques d’activation photonique, des résonances de fluorescence nucléaire (NRF) et de la photofission. En repoussant les limites des mesures nucléaires non destructives, cette plateforme offrirait des solutions innovantes à des défis majeurs dans des secteurs stratégiques tels que la sécurité et le contrôle aux frontières, la gestion des colis de déchets radioactifs, ainsi que l'industrie du recyclage.
Localisation et Cartographie Coopératives via des Méthodes d’Apprentissage Exploitant les Multi-trajets Radio
Dans le cadre de cette thèse, on se propose d'explorer le potentiel des méthodes d'apprentissage machine (ML) pour assurer des fonctions simultanées de localisation et de cartographie (SLAM), en s’appuyant sur des signaux multi-trajets transmis entre plusieurs dispositifs radio coopératifs. L'idée consiste à identifier certaines caractéristiques des canaux de propagation observés conjointement sur plusieurs liens radio, afin de déterminer les positions relatives des dispositifs radio mobiles, ainsi que celles d’objets passifs présents dans leur voisinage. Ces caractéristiques radio reposent typiquement sur les temps d'arrivée d‘échos multiples des signaux transmis. L'approche envisagée doit alors bénéficier de la corrélation de ces trajets multiples au gré du déplacement des dispositifs radio, ainsi que de la diversité spatiale et de la redondance d’information autorisées par la coopération entre ces mêmes dispositifs. Les solutions développées seront évaluées sur la base de mesures indoor collectées à partir des dispositifs ultra large bande intégrés, ainsi que de données synthétiques générées à l'aide d'un simulateur de type « tracer de rayons ». Des applications possibles concernent la navigation de groupe au sein d’environnements complexes et/ou inconnus (ex. flottes de drones ou de robots, pompiers...).
Contrats HW/SW pour l’analyse de robustesse aux fautes de processeurs open-source
Cette thèse se concentre sur la cybersécurité des systèmes embarqués, en particulier sur la vulnérabilité des processeurs et des programmes face aux attaques par injection de fautes. Ces attaques perturbent le fonctionnement normal des systèmes, permettant aux attaquants d'exploiter des failles pour accéder à des informations sensibles. Bien que des méthodes formelles aient été développées pour analyser la robustesse des systèmes, elles se limitent souvent à des analyses séparées du matériel et des logiciels, négligeant l'interaction entre les deux.
Le travail proposé vise à formaliser des contrats entre le matériel et le logiciel (HW/SW) spécifiquement pour l'analyse de sécurité contre les injections de fautes. En s'appuyant sur une approche de partitionnement matériel, cette recherche cherche à atténuer les problèmes de scalabilité liés à la complexité des modèles de microarchitecture. Les résultats attendus incluent le développement de techniques et d'outils permettant une vérification efficace de la sécurité des systèmes embarqués, ainsi que la création de contrats qui faciliteront l'évaluation de la conformité des implémentations matérielles et logicielles. Cette approche pourrait également réduire le temps de mise sur le marché des systèmes sécurisés.