Développement de la méthode Compton-TDCR pour la métrologie des scintillateurs
Les objectifs de cette thèse se situent en amont du côté applicatif, dans le domaine de la métrologie des radionucléides. Ils visent à obtenir des informations essentielles pour la compréhension des mécanismes de scintillation. Ce sujet constitue une nouvelle discipline pour le laboratoire national de métrologie, inexistante dans les autres laboratoires, et porte spécifiquement sur la métrologie des scintillateurs. Les travaux seront axés sur l’instrumentation et l’analyse des résultats, permettant une meilleure compréhension des phénomènes physiques sous-jacents. Il en résulte la co-direction de thèse entre Benoit Sabot (expert en métrologie de la radioactivité) et Christophe Dujardin (expert en scintillation).
L’un des objectifs expérimentaux majeurs de la thèse sera la mise en place de la nouvelle installation Compton-TDCR [7], permettant la mesure absolue du rendement de scintillation en fonction de l’énergie des électrons. Ce dispositif sera conçu par impression 3D et intègrera des détecteurs germanium haute pureté (GeHP) afin d’augmenter la précision des mesures. Après la caractérisation en énergie et en rendement de ces détecteurs, ils seront intégrés dans le montage final. L’étudiant sera en charge du traitement des signaux à l’aide d’un module numérique générant des fichiers List-Mode. Ces données seront ensuite analysées par un logiciel existant développé en Rust, doté d’une interface Python, actuellement limité à quatre voies. Le nouveau dispositif intégrant jusqu’à trois détecteurs GeHP en plus des trois voies de photomultiplicateurs, il sera nécessaire d’adapter le logiciel pour assurer un traitement optimisé des informations obtenues. Après un réglage précis de l’électronique et une série de tests expérimentaux, les modifications logicielles devront être mises en œuvre afin de garantir l’exploitation complète des données fournies par la plateforme.
Une fois cette première étape achevée et la plateforme fonctionnelle, l’étudiant travaillera sur la compréhension des phénomènes de scintillation. Dans un premier temps, les études porteront sur des matériaux standards tels que les scintillateurs organiques (liquides ou plastiques) et inorganiques. Par la suite, l’investigation s’étendra à des matériaux encore peu explorés, comme les scintillateurs poreux. Cette phase nécessitera une collaboration étroite avec l’Université de Lyon, en particulier avec l’Institut Lumière Matière, où seront réalisées des mesures complémentaires permettant d’affiner l’analyse des phénomènes de scintillation, de compléter les résultats obtenus au laboratoire d’effecteur des simulations permettant de coupler les différents types d’expériences.
L’objectif final de cette installation est d’établir une méthodologie de métrologie des scintillateurs, permettant d’accéder à la courbe de réponse de ces matériaux en fonction des énergies des électrons interagissant dans le milieu, ainsi qu’à leurs propriétés temporelles. Ce travail ouvrira la voie à de nouvelles méthodes de mesure des rayonnements ionisants et apportera une contribution significative à la communauté scientifique dans ce domaine.
Vers une technologie piézoélectrique éco-innovante, durable et fiable
Vous recherchez un sujet de thèse à la frontière entre éco-innovation et high-tech… ce sujet est alors pour vous !
L'objectif central de cette thèse est de réduire l'empreinte environnementale de la technologie piézoélectrique (PZE) appliquée aux micro-actionneurs/capteurs, tout en préservant des niveaux optimaux de performances électriques et de fiabilité. Actuellement, la technologie PZE repose sur l'utilisation du plomb, notamment le matériau PZT (Pb(Zr,Ti)O3), ainsi que des électrodes telles que le Pt, Ru, Au, et des éléments dopants comme le La, Mn, Nb pour optimiser les propriétés piézoélectriques et les performances électriques. Ces matériaux, en plus de leur coût écologique significatif, font face à des pénuries avérées ou imminentes.
Dans le contexte de la nécessaire frugalité liée à la transition énergétique, cette thèse se positionne comme une exploration des technologies microsystèmes plus respectueuses de l'environnement et durables. Les travaux de recherche visent à créer un abaque à trois entrées, évaluant l'empreinte écologique, les performances électromécaniques et la fiabilité des technologies existantes (avec plomb) par rapport à celles en cours de développement (sans plomb). Pour atteindre ces objectifs, le doctorant utilisera des Analyses de Cycles de Vie (ACV), des mesures électromécaniques et des essais de fiabilité (tests accélérés de vieillissement).
Cette recherche interdisciplinaire englobera des domaines tels que l'écoconception, la science des matériaux/interfaces et les procédés de fabrication microélectroniques. Le doctorant bénéficiera du soutien des laboratoires de ses encadrants, spécialisés dans les procédés de fabrication/intégration de microsystèmes, ainsi que dans la caractérisation électrique et la fiabilité. La collaboration avec la cellule « éco-innovation » du CEA-Leti enrichira également les ressources disponibles pour la réalisation de ces travaux.
Micro-aiguilles fonctionnalisées par des aptamères pour la détection optique du cortisol
Les dispositifs médicaux compacts et portés sur la personne, en offrant une surveillance autonome et continue de biomarqueurs, ouvrent la voie au suivi précis de pathologies en dehors des centres de soins et à une approche thérapeutique personnalisée. Le projet de thèse vise à développer des capteurs portés à base de micro-aiguilles (MNs) en biomatériaux pour la détection minimalement invasive du cortisol dans le fluide interstitiel (FIS) de la peau. Le cortisol est un des biomarqueurs importants du stress physique et psychologique, et est lié au développement de maladies chroniques. Le FIS, très riche source de biomarqueurs, offre une alternative au sang comme biofluide accessible de façon minimalement invasive pour la quantification du cortisol, et peut être analysé en continu par des dispositifs micro-aiguilles. Ainsi, des micro-aiguilles gonflantes en hydrogel de biopolymère réticulé ont été développées au CEA-Leti ces trois dernières années pour le prélèvement et l’analyse du FIS.
L’objectif du projet sera de fonctionnaliser l’hydrogel par une balise moléculaire aptamèrique sensible au cortisol, et dont la fluorescence sera activée en présence spécifique de ce métabolite, en s’appuyant sur les compétences de l’équipe NOVA du DPM. Ainsi seront conçus des capteurs optiques portés à base de patchs MNs sensibles au cortisol, en explorant deux configurations : des patchs MNs entièrement en hydrogel, et des patchs MNs hybrides comportant un biopolymère guide d'onde optique et un revêtement en hydrogel sensible au cortisol. Différentes formes d'aiguilles/guides d'onde seront explorées pour optimiser les performances de détection par fluorescence des biocapteurs. Sera également évaluée la capacité des dispositifs à perforer un modèle de peau, prélever du FIS artificiel, et détecter la cible. L'étude inclura des tests de biocompatibilité, ainsi qu'une comparaison avec les méthodes actuelles de dosage du cortisol sérique par immuno-essai.
Détection hors distribution avec des modèles de fondation de vision et des méthodes post-hoc
Le sujet de thèse se concentre sur l'amélioration de la fiabilité des modèles de deep learning, en particulier dans la détection des échantillons hors distribution (OoD), qui sont des points de données différents des données d'entraînement et peuvent entraîner des prédictions incorrectes. Cela est particulièrement important dans des domaines critiques comme la santé et les véhicules autonomes, où les erreurs peuvent avoir des conséquences graves. La recherche exploite les modèles de base de la vision (VFMs) comme CLIP et DINO, qui ont révolutionné la vision par ordinateur en permettant l'apprentissage à partir de données limitées. Le travail proposé vise à développer des méthodes qui maintiennent la robustesse de ces modèles pendant le fine-tuning, garantissant qu'ils peuvent toujours détecter efficacement les échantillons OoD. En outre, la thèse explorera des solutions pour gérer les changements de distribution des données au fil du temps, un défi courant dans les applications du monde réel. Les résultats attendus incluent de nouvelles techniques pour la détection OoD et des méthodes adaptatives pour les environnements dynamiques, améliorant ainsi la sécurité et la fiabilité des systèmes d'IA dans des scénarios pratiques.
Moniteur de Faisceau en Diamant pour la Thérapie FLASH
L'optimisation de la dose délivrée à la tumeur nécessite des techniques de traitement avancées. Une approche prometteuse consiste à délivrer la dose en utilisant l'irradiation à très haut débit de dose (Ultra High Dose Rate – UHDR ou radiothérapie FLASH), avec l'optimisation temporelle comme stratégie clé. Des études récentes ont mis en évidence l'efficacité de l'irradiation FLASH utilisant des électrons, montrant des capacités de destructions tumorales similaires à celles obtenues avec une irradiation conventionnelle mais avec un impact réduit sur les tissus sains. Pour exploiter pleinement ce potentiel, une nouvelle approche consistera à utiliser des faisceaux innovants, tels que les faisceaux d'électrons de haute énergie et à hauts débits de dose instantanés et présentant des doses par impulsion plusieurs ordres de grandeur supérieurs à ceux produits par les sources d’irradiation conventionnelles. Ces faisceaux prometteurs présentent un défi majeur pour leur monitoring et mesure, principalement en raison du débit de dose élevé pour lequel les systèmes de mesure actuels ne sont pas prévus de fonctionner.
Le Laboratoire de Capteurs et Instrumentation pour la Mesure (CEA-List) collaborera avec l'Institut Curie dans le cadre du projet FRATHEA. Nous proposons de développer un nouveau moniteur faisceau à base de diamant, connecté à une électronique dédiée, afin d'obtenir des mesures précises de la dose et de la forme des faisceaux pour des faisceaux d'électrons et de protons à haute énergie et haut débit de dose. Des techniques expérimentales interdisciplinaires, incluant la croissance de diamants, la microfabrication de dispositifs, la caractérisation des dispositifs sous sources radioactives et la caractérisation finale avec des faisceaux d'électrons et protons, seront utilisées pour le prototypage et l'évaluation du moniteur à faisceau en diamant.
Dans le cadre du projet FRATHEA, le doctorant travaillera sur les tâches suivantes :
· Croissance de structures de diamants monocristallin (scCVD) optimisées
· Caractérisation des propriétés électroniques des matériaux de diamant synthétisés
· Estimation des caractéristiques de réponse à la dose d'un prototype simplifié (brique élémentaire)
· Fabrication d'un moniteur de faisceau pixelisé
· Participation aux temps de faisceaux à l'Institut Curie pour les tests des dispositifs avec des faisceaux pré-cliniques
Compétences requises :
· Solide base en physique des semi-conducteurs et instrumentation
· Connaissance des détecteurs de rayonnement et des interactions rayonnement-matière
· Capacité à travailler efficacement en équipe et à faire preuve de rigueur technique dans les mesures
Compétences supplémentaires :
· Connaissances en électronique, y compris le traitement du signal, les amplificateurs, les oscilloscopes, etc.
· Familiarité avec la fabrication de dispositifs
· Expérience antérieure de travail avec des matériaux en diamant (atout mais pas obligatoire)
Profil :
· Niveau Master (M2) ou école d'ingénieur, spécialisation en mesures physiques ou instrumentation
Durée du doctorat : 3 ans
Date de début : Dernier semestre de 2025
Contact :
Michal Pomorski : michal.pomorski@cea.fr
Guillaume Boissonnat: guillaume.boissonnat@cea.fr
m.
Etudes des sources lasers à base d’alliage de GeSn pour la photonique Silicium moyen infra-rouge
Vous concevrez et fabriquerez en salle blanche des sources lasers et LEDS à base d’alliage GeSn. Ces nouveaux matériaux du groupe-IV à gap direct et épitaxié sur des wafers Si 200 mm sont considéré comme CMOS compatible et sont très prometteurs pour la réalisation de sources moyen infra-rouge bas coût. Vous caractériserez, sur un banc optique moyen infra-rouge, ces sources lumineuses, en vue de leur future intégration sur une plateforme photonique Germanium/Silicium. Enfin, vous évaluerez également la faisabilité de détection de gaz dans une gamme de concentrations de quelques dizaines à quelques milliers de ppm.
Les objectifs de la thèse sont de :
• Concevoir des empilements de GeSn (Si) efficaces confinant à la fois les électrons et les trous, tout en offrant un fort gain optique.
• Evaluer le gain optique sous pompage optique et injection électrique, à différentes contraintes et niveaux de dopage
• Concevoir et fabriquer des cavités laser à fort confinement optique
• Caractériser les composants fabriqués sous injection optique et électrique en fonction de leur état de déformation à température ambiante et à basse température.
• Obtenir des lasers continus du groupe-IV pompé électriquement
• Comprendre les phénomènes physiques pouvant impacter les performances des matériaux et des composants pour l’émission de lumière.
• Caractériser les meilleurs composants fabriqués pour des détections bas-couts de gaz environnementaux.
Ce travail impliquera des contacts avec des laboratoires étrangers travaillant sur le même sujet dynamique.
Validation d'un modèle d'attaquant pour les attaques laser sur les circuits intégrés
La sécurité des systèmes embarqués est aujourd'hui un enjeu fondamental dans de nombreux domaines : IoT, Automobile, Aéronautique, entre autres. Les attaques physiques sont une menace spécifique supposant un accès physique à la cible. En particulier, les attaques par injection de fautes sur les circuits intégrés (CI) permettent de perturber le système afin de récupérer des donnés confidentielles ou de contourner un mécanisme vérifiant l'intégrité du code exécuté sur une machine. En raison de leurs fortes capacités à générer des vulnérabilités, les développeurs doivent protéger leur système contre de telles attaques pour être conformes aux normes de sécurité telles que Common Criteria et FIPS.
Dans le contexte de la constante réduction des technologies silicium, et avec la transition vers les technologies FD-SOI, le modèle de vulnérabilité d'un CI doit être drastiquement révisé, du niveau transistor jusqu'à celui des circuits numériques complexes. Dans cette thèse, nous proposons d'étudier la validation du modèle d'attaquant à ce dernier niveau. L'objectif est de contribuer à la définition d'un modèle de vulnérabilité après la synthèse d'une description RTL d'un circuit (par exemple un microcontrôleur) dans une technologie FD-SOI 22 nm. Ces modèles contribueront à définir le modèle d'attaquant injecté en entrée d'outils de vérification formelle. Le candidat devra définir une méthodologie pour caractériser par des expériences laser les modèles multicouches et hétérogènes afin de fournir une analyse quantitative de leur limite de validité. La méthodologie sera testée sur des ASIC réalisés par le CEA dans le cadre de projets de R&D permettant d'avoir une maîtrise et une connaissance complète de l'architecture, des paramètres de conception et de synthèse et des codes exécutés.
Contrôle de manipulateur mobile à haute mobilité en contexte dynamique
Le développement de manipulateur mobile capable de capacités d’adaptation est porteur d’avancées importantes pour le développement de nouveaux moyens de production, que ce soit dans des applications industrielles ou agricoles. En effet de telles technologies permettent de réaliser des tâches répétitives avec précision et sans contraintes liées à la limitation de l’espace de travail. Néanmoins, l’efficience de tels robots est soumise à leur adaptation à la variabilité du contexte d’évolution et de la tâche à réaliser. Aussi, cette thèse propose de concevoir des mécanismes d’adaptation des comportements sensori-moteurs pour ce type de robots, afin de garantir une bonne adéquation de leurs actions en fonction de la situation. Elle envisage d’étendre les capacités de reconfiguration des approches de perception et de commande par l’apport de l’Intelligence Artificielle, ici comprise au sens de l’apprentissage profond. Il s’agira de développer de nouvelles architectures décisionnelles capables d’optimiser les comportements robotiques pour la manipulation mobile dans des contextes évolutifs (notamment intérieur-extérieur) et la réalisation de plusieurs travaux de précision.
Module d’auto-adaptation d’antenne et synthèse d’impédance intégré dans la bande sub-6 GHz pour les applications RF de nouvelle génération
L’adoption croissante des systèmes RF sub-6 GHz pour la 5G, l’IoT et les technologies portables a créé une demande critique pour des solutions compactes, efficaces et adaptatives afin d’améliorer le transfert d’énergie, de réduire les effets de désaccord liés à l’environnement, et d’offrir des capacités avancées de détection. Cette thèse propose un système innovant sur puce (SoC) intégrant une unité d’accord d’antenne (ATU) et un module d’impédance synthétisée (SIM) pour répondre à ces défis. En combinant la mesure d’impédance in situ et une réadaptation dynamique, le système résout une limitation majeure des antennes miniatures : leur sensibilité extrême aux perturbations environnementales, telles que la proximité du corps humain ou des surfaces métalliques. De plus, l’intégration du module d’impédance synthétisée apporte une polyvalence supplémentaire en permettant l’émulation de charges complexes. Cette capacité optimise non seulement le transfert d’énergie, mais ouvre également la voie à des fonctionnalités avancées, comme la caractérisation de matériaux et la détection de l’environnement autour de l’antenne.
L’un des axes centraux de cette recherche est la co-intégration d’un analyseur de réseau vectoriel (VNA) avec un réseau de post-matching large bande (PMN) et un module d’impédance synthétisée. Cette architecture combinée offre une surveillance en temps réel de l’impédance, un ajustement dynamique et la génération de profils d’impédance spécifiques, essentiels pour caractériser la réponse de l’antenne dans différents scénarios. Un fonctionnement garanti dans la bande 100 MHz–6 GHz est assuré tout en maintenant une faible consommation d’énergie grâce à une gestion efficace des cycles d’activité.
Profil recherché : vous êtes passionné(e) par l’électronique et la microélectronique, et souhaitez contribuer à une avancée technologique majeure ? Nous recherchons un(e) candidat(e) motivé(e) et curieux(se), doté(e) des qualités suivantes :
. Formation : Diplômé(e) d’une école d’ingénieurs ou titulaire d’un master en électronique ou microélectronique.
. Compétences techniques :
Solides connaissances en technologies transistors (CMOS, Bipolaire, GaN…).
Expertise en conception analogique/RF.
Expérience avec des outils de conception tels qu’ADS et/ou Cadence.
Programmation : Compétences de base en Python, MATLAB ou autres langages similaires.
Expérience complémentaire : Une première expérience en conception de circuits intégrés serait un atout précieux.
. Pourquoi postuler : vous aurez l’opportunité de travailler sur des technologies de pointe au sein d’un environnement de recherche innovant et collaboratif. Vous serez accompagné(e) par des experts renommés du domaine pour relever des défis scientifiques et techniques stimulants.
Contacts : PhD.Ghita Yaakoubi KHBIZA : ghita.yaakoubikhbiza@cea.fr, HDR.Serge Bories : serge.bories@cea.fr
Génération assistée par l'IA de simulateurs d’architectures numériques
Les outils de simulation d'architectures numériques reposent sur divers types de modèles, de niveaux d’abstraction différents, afin de répondre aux exigences de la co-conception et de la co-validation matériel/logiciel. Parmi ces modèles, ceux de plus haut niveau permettent la validation fonctionnelle rapide de logiciels sur les architectures cibles.
Ces modèles fonctionnels sont souvent élaborés de manière manuelle, une tâche à la fois fastidieuse et sujette aux erreurs. Lorsque des descriptions de bas niveau en RTL (Register Transfer Level) sont disponibles, elles deviennent une source à partir de laquelle des modèles de plus haut niveau, tels que les modèles fonctionnels, ou simulateurs rapides, peuvent être déduits. Des travaux préliminaires au CEA ont permis d'obtenir un prototype initial basé sur MLIR (Multi-Level Intermediate Representation), démontrant des résultats prometteurs dans la génération de fonctions d'exécution d'instructions à partir de descriptions RTL.
L'objectif de cette thèse est d'approfondir ces travaux, puis d'automatiser l'extraction des états architecturaux en s'inspirant des dernières avancées en matière d'apprentissage automatique pour l'EDA. Le résultat attendu est un flot complet de génération automatique de simulateurs fonctionnels à partir de RTL, garantissant ainsi, par construction, une consistance sémantique entre les deux niveaux d'abstraction.