Développement de modulateurs IIIV/Si pour les applications émergentes de la photonique intégrée

Le travail de thèse proposé consiste à développer des modulateurs de phase basés sur l’intégration de capacités hybrides IIIV-Silicium dans des guides d’ondes en silicium, à la longueur d'onde de 1.55µm pour répondre aux demandes émergentes de la photonique (calcul optique sur puce, LIDAR). A la différence des applications telecom/datacom, qui ont permis l'émergence de la photonique intégrée sur silicium, ces nouveaux champ applicatifs mettent en jeux des circuits qui nécessitent un très grand nombre de modulateurs de phase. Les modulateurs tout silicium à base de jonction PN, qui présentent des pertes optiques de plusieurs dB et des tailles centimétriques, sont un verrou à l’émergence de ces applications.
Les capacités hybrides IIIV-Si doivent permettre, grâce aux propriétés électro-optiques des matériaux IIIV, de réduire d’un ordre de grandeur la taille des modulateurs silicium et d’améliorer leur efficacité énergétique (réduction des pertes optiques). Des premiers modulateurs fonctionnels ont été conçus, réalisés et testés au laboratoire. Il s’agira dans un premier temps d’étudier plus finement leurs performances (pertes, efficacité, vitesse, hystérésis) et d’en comprendre les ressorts, en utilisant les moyens de simulation optique et de caractérisation électrique disponibles (C(V), densité de charge d'interfaces, DLTS..). Il s’agira notamment de mieux comprendre l’impact du procédé de fabrication sur les propriétés électro-optiques. Dans un second temps le doctorant proposera des améliorations des architectures et des procédés de fabrication (en collaboration avec nos spécialistes), et les validera expérimentalement à partir de capacités hybrides et de modulateurs intégrant ces capacités.

Métasurfaces pour l’ amélioration de l'efficacité des µLEDs à conversion

Dans le contexte de la réalité augmentée, réaliser des matrices de µLEDs RGB est la prochaine étape afin de miniaturiser et simplifier le système optique dans sa globalité. Afin de réaliser de tels dispositifs, une des approches envisagées est de réaliser des matrices de µLEDs en GaN/InGaN bleues et d’appliquer des convertisseurs de couleur vers le rouge et le vert au dessus de cette matrice. Cependant, les applications de réalité augmentée requièrent des dispositifs émissifs directifs, ce qui est à priori difficile à réaliser car l’émission spontanée des convertisseurs est à priori isotrope. Cependant il a récemment été démontré par le laboratoire Charles Fabry (thèse de E. Bailly et direction de cette thèse) que la combinaison de métasurfaces avec des convertisseurs couleurs pouvaient permettre de réaliser de l’émission directive. Le but de cette thèse est alors d’appliquer cette approche en la combinant avec des µLEDs bleues réalisées au CEA-LETI. Durant cette thèse l’étudiant designera les dispositifs afin de les rendre efficaces et avec une émission directive. Puis dans un deuxième temps des dispositifs seront réalisés en salle blanche au LETI et caractérisés opto-électriquement.
La première partie de cette thèse (le design) sera réalisée par l’étudiant principalement dans les locaux du laboratoire Charles Fabry sur le plateau de Saclay, puis il rejoindra le CEA-LETI au sein du LITE à Grenoble pour les aspects de caractérisation et de comparaison avec les simulations.

Les travaux du Laboratoire d'Intégration des Technologies Emissives portent sur l'intégration de la fabrication d'émetteurs µLED, OLED et LCD en environnement de type fonderie microélectronique sur silicium. Il s'agit par exemple d'améliorer les performances de micro-écrans sur ASIC tout en diminuant la taille caractéristique des pixels émetteurs, ou encore de démontrer de nouveaux usages de ces sources lumineuses dans le domaine des capteurs optiques biomédicaux.

Systèmes visuels de questions-réponses combinant un encodeur binarisé et des modèles de langage

Une des tendances majeures des imageurs intelligents est d’aller au-delà de fonctions d’inférence simple telle que la classification ou la détection d’objet. Cela peut notamment se traduire par le souhait d’ajouter des applications plus complexes permettant une compréhension sémantique de la scène. Parmi ces applications, le VQA (Visual Question Answering) permet aux systèmes d'IA de répondre à des questions, formulées avec du texte, en analysant les images. Dans ce contexte, ce sujet vise à développer un système efficace et embarqué de VQA intégrant un encodeur visuel basé sur des réseaux de neurones binaires (BNN) combiné avec un modèle de langage compact (tiny LLM). Même s’il existent encore de nombreuses étapes pour un portage matériel d’un système intégrant un LLM, ce projet représente une étape significative dans cette direction en s’appuyant sur des BNN. Cet encodeur traite des images en limitant le besoin en ressource de calcul, permettant un déploiement en temps réel sur des dispositifs embarqués. Des mécanismes d'attention seront intégrés pour extraire les informations sémantiques nécessaires à la compréhension de la scène. Le modèle de langage utilisé pourra être stocké localement et ajusté conjointement avec le BNN pour générer des réponses précises et contextuellement pertinentes.
Ce sujet de thèse offre une opportunité pour un candidat intéressé par le Tiny Deep Learning et les LLMs. Il propose un vaste champ de recherche pour des contributions significatives et des résultats intéressants pour des applications concrètes. Le travail consistera à développer une topologie de BNN robuste pour l'analyse sémantique d’une scène visuelle, en prenant en compte des contraintes matérielles (mémoire et calcul), à intégrer et à optimiser l'encodeur BNN avec le LLM, tout en assurant un système VQA cohérent et performant à travers différents types de requêtes et de cas d’usage.

Etude de structures micro-optique pour la fonctionnalisation d’imageur infrarouge non refroidie

Initialement développé pour des applications de défense et de surveillance, l’usage des imageurs thermiques se généralise depuis plusieurs années à des applications grand public telles que la thermographie, le contrôle industriel de point chaud ou encore la domotique. Son usage ne requérant ni source ni éclairage ambiant, cela en fait une modalité de choix pour le développement de véhicules plus sécuritaires voir autonomes. A la différence des imageurs visibles, les imageurs thermiques ne disposent pas aujourd’hui de fonctions optiques embarquées au plus proche des pixels.
Dans cette thèse, nous nous intéressons à l’ajout d’une fonction de triage angulaire à faible résolution permettant de discriminer la direction principale de provenance du flux infrarouge incident. Cette information est pertinente pour alimenter des algorithmes de traitement d’images permettant une mise au point automatique plus rapide, une meilleure segmentation des images mais également une estimation de distances. Pour réaliser une telle fonction, un réseau de micro-optiques construites à l’échelle d’un groupe de quelques pixels doit être dimensionné et réalisé. Deux approches concurrentielles à base microlentilles réfractives ou de méta-surfaces sont envisagées à ce stade. En tant que doctorant, votre rôle consistera à :
- Etablir les spécifications préliminaires de ces microlentilles
- Concevoir ces micro-optiques à l’aide de simulation numérique et prédire leur performance
- Suivre la fabrication de ces micro-optiques en salle blanche
- Caractériser ces micro-optiques sur un banc laser dédié et réaliser une preuve de principe en couplant ces dernières avec un imageur infrarouge.

Pour mener à bien votre thèse, vous serez pleinement intégré au sein du Laboratoire d'Imagerie Thermique et THz (LI2T) qui développe, réalise et caractérise des technologies d'imageurs à base de micro-bolomètres.

Conception et intégration de microlasers dans une plateforme photonique silicium

Depuis une dizaine d’années, l’augmentation continue du trafic internet pousse les interconnexions électriques des centres de données vers leur limite en terme de débit, de densité et de consommation. En remplaçant ces liens électriques par des fibres optiques et en intégrant sur puce l’ensemble des fonctions optiques nécessaires à la réalisation d’émetteurs-récepteurs (transceivers), la photonique sur silicium représente une opportunité unique de répondre à ces problématiques. L’intégration d’une source de lumière (laser) au sein d’une puce photonique est une brique essentielle pour le développement de cette technologie. Si de nombreuses démonstrations reposent sur l’utilisation de lasers externes, ou de puces laser aboutées, c’est bien la fabrication hétérogène directe d’un laser sur la puce photonique qui permettrait d’atteindre le niveau de performances souhaité tout en limitant les couts.
L’objectif de cette thèse est d’apporter une solution inédite à la gestion des communications très courtes distances (inter-puces, intra-puces) en réalisant, sur silicium, des microlasers de type membrane III-V à hétéro-structure enterrée. Cette architecture de laser permet de répondre aux nombreux défis des liens très courtes distances grâce à un compromis efficacité/intégrabilité supérieur à l’état de l’art tout en étant compatibles avec les lignes de fabrication CMOS.
L’étudiant aura la charge de (i) dimensionner les microlasers grâce aux outils de simulations numériques disponibles au laboratoire puis (ii) fabriquer ces microlasers en s’appuyant sur les plateformes technologiques du CEA-LETI et du LTM/CNRS et enfin (iii) de caractériser électro-optiquement les composants. Ce travail de thèse sera effectué en collaboration entre le CEA-LETI et le LTM/CNRS et constituera une brique stratégique, nécessaire aux futures générations de transceivers photoniques.

Techniques d’attaques laser appliquées à la rétro-conception de mémoires

Les mémoires jouent un rôle crucial pour la sécurité des systèmes cyber-physiques. Elles gèrent des données sensibles telles que les clés cryptographiques et les codes propriétaires. Avec l'augmentation des attaques dites matérielles, comprendre et manipuler l'organisation de la mémoire est devenu essentiel. Cette thèse vise à explorer l'application de techniques d'injection laser, notamment la Stimulation Laser Thermique (TLS) et la perturbation laser, pour la rétro-conception de mémoires. L'objectif principal est de développer des méthodes pour extraire ou modifier le contenu de la mémoire, avec un accent particulier sur la validation du TLS sur la technologie FDSOI 22nm. De plus, la thèse cherche à utiliser la perturbation laser pour reconstruire l'architecture de la mémoire, analyser les codes correcteurs d'erreurs et concevoir des contre-mesures. Ces travaux s'appuieront sur les infrastructures de tests disponible au CEA (e.g.,https://github.com/CEA-Leti/secbench), ainsi que sur les experts.

Passage à l’échelle du jumeau numérique réseau dans les réseaux de communication complexes

Les réseaux de communication connaissent aujourd’hui une croissance exponentielle à la fois en termes de déploiement d’infrastructures réseau (notamment ceux des opérateurs à travers l’évolution progressive et soutenue vers la 6G), mais aussi en termes de machines, couvrant un large éventail d’équipements allant des serveurs Cloud aux composants IoT embarqués légers (ex. System on Chip : SoC) en passant par les terminaux mobiles comme les téléphones intelligents (smartphones).

Cet écosystème est aussi riche en équipements qu’en composants logiciels allant de l’application (ex. Audio/Vidéo streaming) jusqu’aux protocoles des différentes couches de communication réseau. De plus, un tel écosystème, lorsqu’il est opérationnel, se trouvera en perpétuel changement dont la nature peut être explicitée dans ce qui suit :
- Changement dans la topologie réseau : en raison, par exemple de défaillances matérielles ou logicielles, mobilité des utilisateurs, politiques de gestion des ressources réseau de l’opérateur, etc.
- Changement dans le taux d’utilisation/consommation des ressources réseau (bande passante, mémoire, CPU, batterie, etc.) : en raison des besoins des utilisateurs et des politiques de gestion des ressources réseau de l’opérateur, etc.

Pour assurer une supervision, ou plus généralement, une gestion efficace, qu'elle soit fine ou synthétique, des réseaux de communication, divers services/plateformes de gestion de réseau, tels que SNMP, CMIP, LWM2M, CoMI, SDN, ont été proposés et documentés dans la littérature sur les réseaux et organismes de normalisation. Par ailleurs, de telles plates-formes de gestion ont été largement adoptées notamment par les opérateurs réseau et par l’industrie de manière générale. D’ailleurs, cette adoption intègre souvent des fonctionnalités avancées, notamment des boucles de contrôle automatisées (par exemple, des systèmes experts ou des systèmes basés sur l’apprentissage automatique), améliorant ainsi la capacité des plateformes à optimiser les performances des opérations de gestion du réseau.

Cependant, malgré l’exploration et l’exploitation intensives des plateformes de gestion réseau, ces plateformes ne garantissent pas toujours une (re)configuration sans risque/erreur intrinsèque, dans des cas d’usage assez communs et critiques comme l’optimisation temps-réel du réseau, l’analyse de tests en mode opérationnel (what-if analysis), la planification des mises à jour/modernisations/extensions du réseau de communication, etc. Pour de tels scénarios, un nouveau paradigme de gestion réseau s’avère nécessaire.

Pour traiter les problématiques présentées dans la section précédente, la communauté scientifique a commencé à explorer l’adoption du concept de « jumeau numérique » pour les réseaux de communication, ce qui a donné naissance au paradigme du jumeau numérique réseau (Network Digital Twin : NDT). Le NDT est un jumeau numérique du réseau réel/physique (Physical Twin Network : PTN) ou l’on peut manipuler, sans risque, une copie numérique du vrai réseau, ce qui permet notamment de visualiser/prédire l’évolution (ou le comportement, l’état) du réseau réel si telle ou telle configuration réseau devait être appliquée. Au-delà de cet aspect, le NDT et le PTN échangent des informations via une ou plusieurs interfaces de communication dans le but de maintenir une bonne synchronisation entre eux.

Cependant, mettre en place un jumeau numérique réseau (NDT) n’est pas une tache simple. En effet, la synchronisation PTN-NDT fréquente et en temps réel pose un problème de passage à l’échelle (scalability) lorsqu’il est question de réseaux complexes (ex. nombre d’entités réseau trop important, topologies très dynamiques, volume important d’informations par nœud/par lien réseau), où chaque information réseau est susceptible d’être rapportée au niveau du NDT (par exemple un très grand nombre d'entités réseau, des topologies très dynamiques, ou un grand volume d'informations par nœud/par lien réseau).

Divers travaux scientifiques ont tenté de traiter la question du jumeau numérique réseau (NDT). Dans ces travaux il est question de définir des scenarios, exigences et architecture du NDT. Cependant, la question du passage à l’échelle dans le NDT n’a pas été traitée dans la littérature.

L'objectif de cette thèse de doctorat est de traiter le problème de passage à l’échelle (« scalabilité ») des jumeaux numériques réseau en explorant de nouveaux modèles d'apprentissage automatique pour la sélection et la prédiction des informations réseau.

Ecriture automatique de noyau de calculs pour calculateurs quantiques

Le cadre de la simulation hamiltonnienne ouvre une nouvelle panoplie d'approches de calcul pour l'informatique quantique. Celle-ci peut être développées dans tous les champs pertinents de l'application de l'informatique quantique, incluant, entre-autres les équations aux dérivées partielles (electro-magnétisme, mécanique des fluides, ...) mais aussi le machine learning quantique, la finance, et de nombreuses approches de résolutions de problèmes d'optimisation (heuristiques ou exactes).
Le but de la thèse est de trouver un cadre où ces approches basées sur les approches de simulation hamiltonienne ou d'encodage par bloc sont faisable et dont leur écriture peut être automatisée.
Cela peut aller jusqu'au prototypage d'un générateur de code que l'on cherchera à tester sur des cas pratiques issus de collaboration avec des partenaire européens (stage de quelques mois dans les équipes).

Compréhension et optimisation de la robustesse électrothermique des dispositifs de puissance avançés en SiC

Le carbure de silicium (SiC) est un semi-conducteur aux propriétés intrinsèques supérieures à celles du silicium pour les applications électroniques à haute température et à forte puissance. Il est anticipé que les dispositifs en SiC soient largement utilisés dans la transition vers l'électrification et les nouvelles applications de gestion de l'énergie. Pour exploiter pleinement les propriétés supérieures du SiC, les futurs dispositifs semi-conducteurs seront utilisés dans des conditions de polarisation et de températures extrêmes. Ces dispositifs doivent fonctionner en toute sécurité à des densités de courant, des dV/dt et des températures de jonction plus élevées que les dispositifs en Si.
L'objectif de cette thèse est d'étudier les dispositifs SiC fabriqués au LETI dans ces conditions de fonctionnement extrêmes, et d'optimiser leur conception pour utiliser pleinement le potentiel théorique du SiC. Le travail de thèse comprendra plusieurs phases qui seront fortement couplées :
Un volet caractérisation electro-thermique avancée (50%), en proposant de nouvelles approches de tests sur composants en boitier ou sur support adapté, en utilisant des outils d’intelligence artificielle (IA) pour l’extraction et le traitement des données. La travail inclura une adaptation des méthodologies de mesures standard aux spécificités de commutation du SiC.
Une évaluation (15%) des paramètres de conception et technologiques responsables des limites de fonctionnement des composants
Un volet caractérisation physico-chimique (15%) pour l'analyse des défaillances sous ces conditions extrêmes
Un volet d'inclusion de modèles prédictifs (20%) de sensibilité des architectures aux conditions extrêmes et aux défauts basée sur la modélisation.

Conception et optimisation de routeurs de couleurs pour capteur d’images

Les routeurs de couleur représentent une technologie prometteuse qui pourrait révolutionner le domaine des capteurs d’image. Composés de structures nanométriques appelées métasurfaces, ces dispositifs permettent de modifier la propagation de la lumière pour améliorer l’efficacité quantique des pixels. Grâce aux avancées techniques récentes, il est désormais possible de concevoir et de réaliser ces structures, ouvrant la voie à des capteurs d’image plus performants.
Le sujet de thèse porte sur la conception et l’optimisation de routeurs de couleur pour des capteurs d’images. Plusieurs pistes de recherche seront explorées, comme l’implémentation de nouvelles géométries de métasurfaces (« freeform ») ou bien des configurations innovantes dans l’objectif de réduire le pas pixel (0.5µm ou 0.6µm). Diverses méthodes d’optimisation pourront être utilisées, telles que la méthode adjointe, le machine learning ou l’utilisation de solveurs auto-différentiables. Les designs devront être résilient à l’angle d’incidence de la lumière et aux variations attendues lors de la fabrication. Après cette phase de simulation, les structures proposées seront réalisées et l'étudiant(e) aura pour mission de caractériser les puces et d’analyser les résultats obtenus (rendement quantique, fonction de transfert de modulation…).
Les activités principales de l’étudiant(e) :
- Simulation optique à l’aide de méthodes numériques (FDTD, RCWA)
- Développement de méthodologies d’optimisation pour la conception de métasurfaces (méthode adjointe, optimisation topologique…)
- Caractérisation électro-optique et analyse des données expérimentales

Top