Surface électromagnétique programmable aux fréquences sub-THz à base de commutateurs à matériaux à changement de phase

La conception et le développement de surfaces rayonnantes pour la formation électronique de faisceau, la modulation spatio-temporelle, la détection et la conversion de fréquence est un enjeu important pour des nombreuses applications aux fréquences sub-THz (0.1-0.6 GHz). Parmi ces applications on peut mentionner l’imagerie médicale et le contrôle industriel, l’observation de la terre et de l’espace profond, ainsi que les radars et les systèmes futurs de télécommunication très large bande. Dans ce contexte, les (Meta)Surfaces Intelligentes et Reconfigurables (RIS) sont une technologie de rupture. Leur utilisation permet de contrôler et former le rayonnement aux fréquences sub-THz de manière hybride analogique / numérique. Pour démocratiser la technologie RIS, il sera crucial de réduire sa consommation d'énergie de deux ordres de grandeur. Cependant, l'état de l'art ne répond pas aux exigences d'intégration, de modularité, de bande passante large et de haute efficacité.
Sur la base de nos résultats de recherche récents, l'objectif principal de ce projet de thèse sera de démontrer des nouvelles architectures de RIS à base de silicium à 140 GHz et 300 GHz. L'amélioration des performances du RIS THz découlera d'un choix judicieux de la technologie de fabrication et de nouvelles conceptions de méta-atomes (également appelées cellule unitaire ou élément) à large bande avec des commutateurs intégrés de type PCM (materiaux à changement de phase). La possibilité de contrôler dynamiquement l'amplitude des coefficients de transmission des méta-atomes, en plus de leur phase, sera également étudiée. Un éclairage en champ proche sera introduit pour obtenir un profil ultra-compact. A notre connaissance, cela constitue une nouvelle approche pour la conception d'antennes à gain élevé dans la gamme de fréquence sub-THz.

Défense des modèles d'analyse de scène contre les attaques adversaires

Dans de nombreuses applications, des briques d'analyse de scène comme la segmentation sémantique, la détection et la reconnaissance d'objets, ou la reconnaissance de pose, sont nécessaires. Les réseaux de neurones profonds sont aujourd'hui parmi les modèles les plus efficaces pour effectuer un grand nombre de tâches de vision, parfois de façon simultanée lorsque l'apprentissage profond est multitâches. Cependant, il a été montré que ceux-ci étaient vulnérables face aux attaques adversaires (adversarial attacks): En effet, il est possible d'ajouter aux données d'entrée certaines perturbations imperceptibles par l'oeil humain qui mettent à mal les résultats lors de l'inférence faite par le réseau de neurones. Or, une garantie de résultats fiables est capitale pour les systèmes de décision où les failles de sécurité sont critiques (ex : applications comme le véhicule autonome, la reconnaissance d’objets en surveillance aérienne, ou la recherche de personnes/véhicules en vidéosurveillance). Différents types d'attaques adversaires et de défense ont été proposés, le plus souvent pour le problème de classification (d'images notamment). Quelques travaux ont abordé l'attaque des plongements qui sont optimisés par apprentissage de métrique pour les tâches de type ensemble-ouvert comme la réidentification d'objets, la reconnaissance faciale ou la recherche d'images par le contenu. Les types d'attaques se sont multipliés, qu'il s'agisse d'attaques universelles ou optimisées sur une instance particulière. Les défenses proposées doivent faire face à de nouvelles menaces sans trop sacrifier les performances initiales du modèle. La protection des données d'entrée face aux attaques adversaires est capitale pour les systèmes de décision où les failles de sécurité sont critiques. Un moyen de protéger ces données est de développer des défenses contre ces attaques. L'objectif sera donc d'étudier et de proposer différentes attaques et défenses applicables aux briques d'analyse de scène, notamment celles de détection d'objets et de recherche d'instance d'objet dans les images.

Conception de circuit radiofréquence pour la communication zéro energie

Notre ambition pour la communication 6G est de réduire radicalement l'énergie dans l'IoT. Pour ce faire, nous souhaitons développer un circuit intégré permettant une communication à énergie zéro qui sera une preuve de concept.
L'objectif de cette thèse est de concevoir ce circuit en FD-SOI et de le faire fonctionner dans la bande des 2,4 GHz. Dans cette thèse, nous proposons d'utiliser une nouvelle technique de conception qui révolutionne actuellement la conception des radiofréquences. Nous espérons que de nombreuses innovations pourront être réalisées au cours de ce doctorat en combinant ces deux innovations.
Le candidat intégrera une grande équipe de conception et participera à des projets de collaboration au niveau européen. Dans un premier temps, il analysera les contraintes du système pour choisir la meilleure architecture et en déduire les spécifications. Ensuite, il formalisera mathématiquement les performances de la technique de rétrodiffusion afin de mettre en place une méthodologie de conception. Il travaillera ensuite à plein temps sur la conception du circuit, envoyant à la fabrication deux circuits en technologie 22 um. Il sera également impliqué dans le test du circuit ainsi que dans la préparation d'un démonstrateur des techniques de rétrodiffusion. Nous espérons publier plusieurs articles dans des conférences de haut niveau.

Etude des mécanismes de transfert de structures 3D dans une couche inorganique pour l'optoélectronique

Les dispositifs optoélectroniques tels que les capteurs d’image à base de CMOS (aussi appelés imageurs) nécessitent la fabrication de structures 3D, des microlentilles convexes, afin de faire converger les photons vers les diodes photosensibles qui constituent les pixels. Ces éléments optiques sont indispensables pour le fonctionnement des dispositifs imageurs et leur forme ainsi que leur dimension sont critiques pour les performances. Dans le même ordre d’idée, les dispositifs basés sur l’optique diffractive ainsi que les capteurs hyper-spectraux sont en quête de structures multi-hauteurs complexes à réaliser. Enfin, les nouvelles technologies de micro-displays pour la réalité augmentée (AR) et de réalité virtuelle (VR) requièrent des structures 3D difficiles à réaliser avec les techniques de micro-fabrication conventionnelles.

Le Leti est à la pointe de l’état de l’art mondial sur une méthode innovante de photolithographie, dite par niveau de gris ou Grayscale, qui permet de réaliser toute une gamme de structures 3D dans une résine photosensible. Des formes concaves, ellipsoïdales, pyramidales et asymétriques sont ainsi accessibles. Ces structures complexes pourraient être utilisées pour de nouveaux domaines applicatifs, comme la photonique et les technologies de micro-displays précédemment citées. Une fois ces structures 3D réalisées dans une résine photosensible, il est nécessaire de les transférer par gravure plasma dans une couche fonctionnelle adaptée. Les mécanismes de transfert de structures 3D micrométriques dans une couche de polymère ont été récemment étudiés au Leti. Pour adresser de nouveaux besoins applicatifs, on souhaite désormais transférer ce type de structures 3D dans des couches inorganiques à base de silicium. De plus, ces structures, de plusieurs micromètres jusqu’à présent, tendent désormais vers des dimensions largement inférieures au micromètre. Cet aspect devrait rendre d’autant plus complexe la fidélité de transfert de motifs 3D.

Bien que critique, le transfert de motifs grayscale submicronique dans des couches inorganiques par gravure plasma est très peu été décrit dans la littérature. Cette thématique est de ce fait innovante et a une réelle valeur ajoutée. L’objectif de cette thèse est d’étudier et de comprendre les mécanismes de gravure de structures 3D submicroniques dans des couches inorganiques à base de silicium, telles que l’oxyde de silicium (SiO2) et le nitrure de silicium (SiN). Cela sera aussi l’occasion de répondre à certaines questions laissées en suspens lors des précédentes études. Le travail à réaliser est à très forte dominante expérimentale et se déroulera principalement dans la salle blanche 300mm du Leti. Vous aurez accès à des réacteurs de gravure plasma de dernière génération, ainsi qu’à de nombreux moyens de caractérisations. Cette thèse sera réalisée en étroite collaboration avec le service photolithographie du Leti et en interaction avec ses différentes équipes, telles que la plateforme silicium et les départements applicatifs.

Apprentissage des modèles du monde pour les agents autonomes avancés

Les modèles du monde sont des représentations internes de l'environnement externe qu'un agent peut utiliser pour interagir avec le monde réel. Ils sont essentiels pour comprendre les lois physiques qui régissent les dynamiques du monde réel, faire des prédictions et planifier des actions à long terme. Les modèles du monde peuvent être utilisés pour simuler des interactions réelles et améliorer l'interprétabilité et l'explicabilité du comportement d'un agent dans cet environnement, ce qui en fait des composants clés pour les modèles avancés d'agents autonomes.

Néanmoins, la construction d'un modèle du monde précis reste un défi. L'objectif de cette thèse de doctorat est de développer une méthodologie pour apprendre les modèles du monde et étudier leur utilisation dans le contexte de la conduite autonome, en particulier pour la prévision des mouvements et le développement d'agents autonomes pour la navigation.

Implémentation matérielle/logicielle sécurisée et agile des nouveaux algorithmes de signature numérique en cryptographie post-quantique

La cryptographie joue un rôle fondamental dans la sécurisation des systèmes de communication modernes en garantissant la confidentialité, l'intégrité et l'authenticité. La cryptographie à clé publique, en particulier, est devenue indispensable pour sécuriser les processus d’échange de données et d’authentification. Cependant, l’avènement de l’informatique quantique constitue une menace pour de nombreux algorithmes cryptographiques à clé publique traditionnels, tels que RSA, DSA et ECC, qui reposent sur des problèmes tels que la factorisation entière et les logarithmes discrets que les ordinateurs quantiques peuvent résoudre efficacement. Conscient de ce défi imminent, le National Institute of Standards and Technology (NIST) a lancé en 2016 un effort mondial pour développer et normaliser la cryptographie post-quantique (PQC). Après trois rondes d'évaluations, le NIST a annoncé son premier ensemble d'algorithmes standardisés en 2022. Bien que ces algorithmes représentent un progrès significatif, le NIST a exprimé un besoin explicite de cryptosystèmes supplémentaires qui exploitent des hypothèses de sécurité alternatives et a ouvert un nouveau concours dédié aux nouvelles signatures.
À mesure que la communauté cryptographique s’oriente vers l’adoption de cette nouvelle cryptographie, un défi majeur réside dans leur déploiement efficace dans des systèmes réels. Les implémentations matérielles, en particulier, doivent répondre à des exigences strictes en matière de performances, de consommation d'énergie et de coût, tout en offrant la flexibilité nécessaire pour s'adapter à plusieurs algorithmes, qu'ils soient standardisés ou encore en cours d'évaluation. Une telle agilité est essentielle pour pérenniser les systèmes face à l’incertitude inhérente aux transitions cryptographiques. L'objectif principal de cette thèse sera de concevoir et de développer des implémentations matérielles agiles pour des algorithmes de signature numérique post-quantique. Cela implique une étude approfondie des principaux candidats du quatrième tour du concours du NIST, ainsi que de ceux déjà standardisés, afin de comprendre leurs formalismes, leurs propriétés de sécurité et leurs bottlenecks. La thèse explorera également les optimisations pour l'efficacité des ressources, en équilibrant les compromis entre performances, consommation d'énergie et surface. De plus, la résilience contre les attaques physiques (attaques par canaux cachés et par injection de fautes) sera un élément clé du processus de conception.
Ce projet de thèse sera mené au sein du projet PEPR PQ-TLS en collaboration avec le laboratoire TIMA (Grenoble), l'Agence nationale de la sécurité des systèmes d'information (ANSSI) et l'INRIA.

Radars passifs distribués

L'objectif de cette thèse consiste à détecter et localiser des drones pénétrant dans une zone urbaine à protéger grâce à l’observation des signaux émis par les stations cellulaires.
Des études ont montrées qu’il était possible de localiser un drone s’il était proche du système d’écoute et de la station cellulaire (i.e. la station de base). Quand la situation est plus complexe (i.e. il n’y a pas de trajet direct entre la station cellulaire et le radar ou en présence de plusieurs stations cellulaires émettrices causant un fort niveau d’interférence), un seul système d’écoute dit radar passif ne peut détecter et localiser correctement le drone.
Pour s’affranchir de ces conditions difficiles, nous souhaitons distribuer ou déployer sur la zone à protéger un ensemble de radars passifs à faible complexité qui exploitent de façon optimale les signaux émis par ces stations cellulaires. Une stratégie de distribution et de déploiement de radars passifs est alors à considérer en prenant en compte les positions des stations cellulaires émettrices. La possibilité d’échanger des informations entre les radars passifs doit également être envisagée afin de mieux gérer les interférences liées aux stations cellulaires.
Le candidat devra faire état d’une formation de niveau Master 2 à dominante traitement numérique du signal. De bonnes connaissances en télécoms, radar et propagation sont recommandées.

L’étudiant sera accueilli au CEA Grenoble dans une équipe d’experts en traitement du signal pour les télécommunications (http=s://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/plateforme-telecommunications.aspx)

Support logiciel pour calcul clairsemé

Les performances des calculateurs sont devenues limitées par les déplacements des données dans les domaines de l'IA, du HPC comme dans l'embarqué. Il existe pourtant des accélérateurs matériels qui permettent de traiter des mouvements de données de façon efficace énergétiquement, mais il n'existe pas de langage de programmation qui permette de les mettre en œuvre dans le code supportant les calculs.

C'est au programmeur de configurer explicitement les DMA et utiliser des appels de fonctions pour les transferts de données et analyser les programmes pour en identifier les goulots d'étranglement mémoire.

Par ailleurs les compilateurs ont été conçus dans les années 80, époque à laquelle les mémoires travaillaient à la même fréquence que les cœurs de calcul.

L'objet de cette thèse sera d'intégrer dans un compilateur la possibilité de réaliser des optimisations basées sur les transferts de données.

Modélisation des Signatures Électromagnétiques dans un Scénario à Trajets Multiples pour la Reconnaissance d'Objets et le SLAM Radio Sémantique

Contexte:
La vision des futurs réseaux de communication sans fil envisage des services de positionnement et de localisation extrêmement précis dans des environnements intérieurs et extérieurs, en parallèle avec les services de communication (Joint Communication and Sensing- JCAS). Avec l'utilisation généralisée des technologies radar, le concept de Simultaneous Localization and Mapping (SLAM) a récemment été adapté aux applications en radiofréquences. Les premières démonstrations de faisabilité ont été réalisées en environnements intérieurs, produisant des cartes 2D basées sur des signaux rétrodiffusés aux ondes millimétriques (mmWave) ou en THz. Ces mesures permettent de fournir des données de détection, ouvrant la voie au développement de modèles complexes qui détaillent l'emplacement précis, la taille et l'orientation des objets cibles, ainsi que leurs propriétés électromagnétiques et leur composition matérielle.
Au-delà de la simple reproduction de cartes, l'intégration de la reconnaissance et du positionnement d'objets dans l'environnement peut ajouter une couche sémantique à ces applications. Bien que le SLAM sémantique ait été exploré avec des technologies basées sur des capteur vidéo, son application aux radiofréquences reste un domaine de recherche émergent nécessitant des modèles électromagnétiques précis des signatures des objets et de leurs interactions avec l'environnement. Des études récentes ont développé des modèles basés sur l'optique physique itérative et des courants équivalents pour simuler la signature multistatique en espace libre d'objets proches.

Thèse de doctorat:
L'objectif de cette thèse est d'étudier et de modéliser la rétrodiffusion des objets dans un scénario à trajets multiples, afin d'obtenir une imagerie précise et une reconnaissance des objets (y compris leurs propriétés matérielles). Le travail consistera à développer un modèle mathématique pour la rétrodiffusion des objets détectés dans l'environnement, à l'appliquer au SLAM 3D et à atteindre des objectifs de reconnaissance et de classification des objets. Ce modèle devra intégrer les effets en champ proche et en champ lointain tout en prenant en compte l'impact de l'antenne sur le canal radio global.
L'étude soutiendra la conception conjointe des systèmes d'antennes et des techniques de traitement associées (filtrage et imagerie) nécessaires à l'application.
Le doctorant fera partie du Laboratoire Antennes, Propagation et Couplage Inductif du CEA-LETI, à Grenoble (France). Il bénéficiera d'installations de pointe (sondeurs de voies, émulateur, logiciel OTA et simulateur électromagnétique).
La thèse se déroulera en partenariat avec l'Université de Bologne.

Application:
Le poste est ouvert aux étudiant.e.s exceptionnels titulaires d’un Master of Science, d’une école d’ingénieur ou équivalent. Le/la étudiant.e doit avoir une spécialisation dans le domaine des télécommunications, des micro-ondes et/ou du traitement du signal. Le dossier de candidature doit obligatoirement comprendre un CV, une lettre de motivation et les notes des deux dernières années d'études.

Conception innovante de circuit radiofréquence basée sur une approche de co-optimisation technology-système

Ce sujet de thèse adresse les deux grands défis de l’Europe d’aujourd’hui pour l’intégration des systèmes de communication du futur. Il s’agit de concevoir des circuits intégrés RF en technologie 22nm FDSOI dans les bandes de fréquences dédiées à la 6G permettant non seulement d’augmenter les débits mais aussi de réduire l’empreinte carbone des réseaux de télécommunications. En parallèle, il est primordial de réfléchir à l’évolution des technologies silicium qui permettraient d’améliorer l’efficacité énergétique et l’efficacité de ces circuits. Ce travail sera mené en apportant une réflexion sur la méthodologie de conception des systèmes radiofréquences.
Dans le cadre de la thèse, l'objectif sera décomposé en trois phases. Il faudra d’abord se doter d’outils de simulation, préfigurant les performances de la future technologie FDSOI 10nm du Leti. Une deuxième étape consistera à identifier les architectures les plus pertinentes existant dans la littérature pour les domaines applicatifs envisagés pour la technologie. Un lien avec les projets amonts en télécommunications sera systématiquement établi pour que le candidat saisisse les enjeux des systèmes.
Enfin, afin de valider les concepts développés, la conception d’un LNA et d’un VCO dans le cadre d’un projet en cours dans le laboratoire sera proposée.

Le candidat s’intégrera dans une équipe conséquente qui travaille sur les nouveaux systèmes de communication et qui aborde à la fois les aspects d’étude architecturale, de modélisation et de conception de circuits intégrés. Le candidat devra disposer de compétences sérieuses en conception de circuits intégrés et en systèmes radiofréquence ainsi qu’une bonne aptitude à travailler en équipe.

Top