METHODES DE SYNTHESE D’HETEROCYCLES AZOTES FONCTIONNALISES ET APPLICATION AUX MOLECULES ENERGETIQUES
L’objectif de la thèse est de mettre au point de nouvelles méthodes de synthèse et/ou de fonctionnalisation permettant d’obtenir des molécules hétérocycliques fonctionnalisées. Ces molécules sont basées sur des cycles aromatiques azotés à 5 ou 6 atomes (diazines, triazines, triazoles, tétrazoles…). Les structures visées permettent d’envisager de fortes densités et enthalpie de formation, tout en conservant une faible sensibilité aux agressions (thermiques, mécaniques…). Elles trouvent des applications dans le domaine énergétique, notamment la propulsion, les explosifs et les générateurs de gaz (airbags). De plus, ces composés hétérocycliques ainsi que les intermédiaires sont également structuralement proches de familles de produits biologiquement actifs et/ou susceptible de présenter des propriétés de fluorescence, comme l’a déjà montré une thèse précédente au laboratoire.
Ordonnancement des accès I/O sur bandes magnétiques à l'aide de l'apprentissage automatique
Les simulations numériques sont utilisées pour obtenir des réponses à des
phénomènes physiques qui ne sont pas reproductibles, soit parce qu'ils sont
trop dangereux soit parce qu'ils sont trop coûteux. Les modèles utilisés
pour ces simulations sont de plus en plus complexes, en termes de taille et
de précision, et nécessitent l'accès à des capacités de calcul et de stockage
de données toujours plus importantes. À cet effet, et afin d'optimiser les
coûts, l'utilisation de technologies de stockage de masse telles que les
bandes magnétiques est cruciale. Cependant, pour assurer une bonne performance
du système dans son ensemble, le développement d'algorithmes et de mécanismes
liés au placement des données et à l'ordonnancement des accès sur bandes est
essentiel. L'objectif de la thèse est d'étudier la technologie des bandes
magnétiques, ainsi que les mécanismes existants tels que la RAO (Recommended
Access Order) ou la rétention de requêtes ; et de mettre en
œuvre de nouvelles stratégies pour l'optimisation des performances des
bandes magnétiques.
Etudes du transport d’un faisceau d’électrons dans du gaz
Le Laboratoire Faisceaux et Electronique de Puissance utilise des faisceaux d’électrons relativistes pulsés intenses afin d’étudier la réponse thermo-mécanique des matériaux. Ces expériences sont réalisées sur l’installation CESAR du CEA CESTA, une installation délivrant un faisceau d'électrons très intense (800 keV, 300 kA) en un temps très bref (quelques dizaines de nanosecondes). Le faisceau doit être transporté sur une dizaine de centimètres, avant d’atteindre la cible, dans laquelle il sera soumis à un champ magnétique et interagira avec du gaz. L'ionisation du gaz par le faisceau limite les effets de charge d'espace et permet ainsi de transporter le faisceau jusqu'à la cible étudiée. La physique du transport du faisceau dans la chambre d'expérience est complexe, justifiant des études expérimentales et numériques pour donner une description pertinente du faisceau qui interagit avec les matériaux étudiés.
Commande contrôle de générateurs impulsionnels à état solide
Le CEA et le laboratoire SIAME de l'Université de Pau et Pays de l'Adour mènent des recherches exploratoires dans le domaine de la commutation à l’état solide pour les Hautes Puissances Pulsées (HPP).
Cette technologie offre des perspectives prometteuses pour le développement de nouvelles machines allégées en servitudes et systèmes ancillaires, dans des architectures électrotechniques plus compactes et plus intégrées. Cette technologie est un atout au profit des programmes de durcissement, de radiographie éclair, des grands lasers de puissance ou des applications électromagnétiques de Défense.
Le candidat travaillera à Pau et se rendra régulièrement sur le site du CEA CESTA au Barp (33114) pour des réunions d’échange et des phases expérimentales.
Synthèse d’aérogels organiques à partir de dérivés du polydicyclopentadiène
L'étude de la fusion par confinement inertiel du mélange deutérium + tritium (DT) est une problématique depuis longtemps abordée au CEA. Les expérimentations liées à cette thématique, effectuées au sein du laser mégajoule (LMJ), nécessitent l'utilisation de matériaux aux propriétés particulières. Cela concerne entre autres les mousses de polymères (aérogels organiques) composant les cibles de pré-ignition. De tels matériaux doivent notamment associer une très faible densité avec une tenue mécanique suffisante pour leur permettre d’être compatible avec le procédé de préparation utilisé. Dans ce contexte, le but est de travailler sur la préparation de ces aérogels polymériques CHx à base de polydicyclopentadiène (pDCPD) et autres polymères dérivés par polymérisation par ouverture de cycle par métathèse (ROMP) afin de produire des matériaux (i) de faible densité apparente (valeur ciblée dans le projet : inférieur à 50mg/CC), (ii) homogènes, (iii) présentant une (nano)porosité (ouverte) fine et (iv) usinables.
Les travaux de la thèse proposée seraient centrés sur trois axes :
1. la synthèse de nouveaux (co-)monomères
2. la préparation des aérogels organiques et leurs
3. l’exploitation des données par l'IA (opportunité)