Thermorégulation diphasique pour les composants semiconducteurs Ultra Grand Gap en diamant
Cette thèse porte sur l’étude d’un système de thermorégulation diphasique pour composants à semiconducteur de puissance ultra grand gap en diamant. Les composants en diamant ayant la particularité d’avoir leur résistance à l’état passant qui diminue lorsque la température augmente, cette thermorégulation vise à optimiser les pertes globales du système ainsi que d’assurer un équilibrage des températures ainsi que des contraintes entre plusieurs composants en diamant en parallèle.
Basé sur un cahier des charges qui sera défini en début de thèse (calories à évacuer, plage de température à réguler), le doctorant aura pour objectif de :
- définir une stratégie de contrôle de la température
- définir un couple matériau / fluide le mieux approprié
- Dessiner le système de thermorégulation
- Mettre en œuvre et valider expérimentalement le système proposé
La thèse abordera des aspects de simulations numérique (modélisation de composants et du système de thermorégulation) ainsi que des essais expérimentaux via la réalisation d’un prototype de TRL3-4 intégré à un système de convertisseur intégrant des diodes en diamant.
L’objectif final est de pouvoir mettre en avant un système innovant modélisé et démontré expérimentalement, où la stratégie de contrôle et les éléments dimensionnels et opératoires dimensionnants auront été investigués et optimisés.
Etude des synergies Zn, Cr, Fe, Ni sur la cristallisation au sein de verres simplifiés d’intérêt nucléaire
En France, l’utilisation de l’énergie nucléaire pour la production d’électricité génère des déchets dits de Haute Activité lors de l’étape du retraitement des combustibles usés. Ces déchets sont immobilisés en matrice vitreuse borosilicatée, dont la structure permet d’incorporer à l’échelle atomique un grand nombre d’éléments chimiques, et garantissant d’excellentes propriétés de comportement à long terme. Les enjeux à venir de la filière conduisent à une évolution des combustibles mis en œuvre dans les réacteurs, ce qui peut potentiellement induire de fait une évolution de la nature des flux à vitrifier.
Parmi les éléments à étudier, on retrouve notamment le chrome, dont la solubilité est relativement faible dans les verres borosilicatés, présentant des synergies de cristallisation avec d’autres éléments contenus dans les verres de conditionnement, comme le fer, le nickel et le zinc. Ce travail de thèse vise donc à étudier les effets synergiques de Cr, Ni, Fe et Zn sur des verres borosilicatés peralcalins simplifiés d’intérêt nucléaire, afin de mieux appréhender les affinités de cristallisation entre les différents éléments et ainsi identifier la nature et la teneur des différentes phases susceptibles de se former
Le/la doctorant/doctorante bénéficiera des compétences reconnues du laboratoire sur la formulation de verres et l’étude de leurs propriétés physico-chimiques. L’ensemble des moyens mis à disposition permettra une approche globale du sujet, en travaillant sur une thématique en plein essor et porteuse de forts enjeux industriels. L’expérience acquise pendant ce travail interdisciplinaire pourra se valoriser dans le domaine des matériaux.
Ligands peptidiques sur mesure pour la complexation des actinides : de la structure à la sélectivité
Les procédés du cycle du combustible nucléaire, tels que le procédé PUREX visant à séparer l’uranium et le plutonium des produits de fission, reposent sur l’utilisation de ligands capables de complexer sélectivement les cations actinides afin de les extraire. Les fonctions chimiques portées par ces ligands jouent un rôle essentiel dans leur affinité et leur sélectivité vis-à-vis des cations métalliques. L’étude de l’influence de ces groupements fonctionnels, comme les acides carboxyliques et les phosphates, est donc déterminante pour concevoir de nouvelles molécules extractantes, mais également pour développer des stratégies de décorporation.
Au cours de la dernière décennie, des peptides cycliques ont été développés pour leur capacité à complexer l’uranyle avec une forte sélectivité par rapport au calcium. Organisés en feuillet ß, ces peptides présentent une face fonctionnelle portant des fonctions complexantes (carboxylates, phosphates). La composition en acides aminés peut être ajustée pour moduler finement la nature chimique du site de coordination, faisant de ces peptides cycliques de véritables architectures moléculaires sur mesure pour sonder la complexation du cation. Toutefois, si leur interaction avec l’uranium est désormais bien documentée, leur capacité à se lier aux transuraniens reste à explorer.
La thèse proposée vise à étudier la complexation d’actinides tels que le plutonium et le neptunium par différents peptides cycliques. Le couplage de la spectroscopie RMN avec des simulations de dynamique moléculaire classique fournira des informations structurales fines sur les complexes formés. Des techniques complémentaires, telles que les spectroscopies d’absorption UV-Vis-nIR et EXAFS, la spectrométrie de masse ESI-MS et la spectroscopie de fluorescence, permettront d’approfondir leur caractérisation. En combinant expérimentation et modélisation, cette thèse contribuera à affiner la compréhension des interactions entre ligands et actinides, tout en ouvrant la voie à la conception de nouvelles molécules extractantes ou décorporantes.
Étude des phénomènes d’autocatalyse lors de la dissolution en milieu nitrique – Apports des méthodes électrochimiques
Le procédé de recyclage des combustibles nucléaires, mis en œuvre en France à l’usine de La Hague, commence par une étape de dissolution en milieu nitrique du combustible usé, principalement constitué d’oxydes d’uranium et de plutonium. Dans une perspective de renouvellement des usines et de généralisation du recyclage des combustibles MOX, de nouveaux appareils innovants pour la dissolution sont étudiés. Le dimensionnement de tels appareils est limité à l’heure actuelle par l’absence de modèle complet de la dissolution des oxydes mixtes qui est une réaction très complexe (triphasique, auto-catalytique, non-homogène, etc.). Si des avancées ont été permises par les nombreux travaux précédents, un certain nombre de questions restent en suspens, concernant en particulier les mécanismes réactionnels mis en jeux et la nature du catalyseur.
Les méthodes électrochimiques (voltammétrie cyclique, spectroscopie d’impédance électrochimique, électrode tournante, etc.) n’ont jamais été mises en œuvre pour la compréhension de la dissolution mais devraient pourtant s’avérer pertinentes comme cela a déjà été démontré par les travaux réalisés sur ce sujet par le CEA Saclay dans le domaine de la corrosion. L’objectif de cette thèse sera donc d’appliquer ces méthodes expérimentales pour la première fois à la dissolution de combustibles nucléaires, dans une démarche de compréhension phénoménologique. Pour ce faire, l’étudiant(e) pourra s’appuyer sur les équipes et les installations des centres de Saclay et de Marcoule spécialisées respectivement dans les méthodes électrochimiques pour l’étude de la corrosion et dans la modélisation physico-chimique de la dissolution.
Cette étude transverse, impliquant science des matériaux, électrochimie et génie chimique, s’inscrira dans une démarche stimulante de recherche de fondamentale mais également dans un contexte industriel très dynamique. Les travaux seront réalisés dans un premier temps sur des matériaux modèles et nobles en inactif (sur le centre de Saclay) puis sur matériaux réels contenant de l’uranium et/ou du plutonium dans un second temps (sur le centre de Marcoule).
Synthèse et dissolution de SIMMOX homogènes préparés par voie hydroxyde
La dissolution du combustible nucléaire usé constitue une première étape essentielle de son retraitement. La cinétique de dissolution des (U,Pu)O2 (MOX) irradié constitue actuellement un frein à leur retraitement à l’échelle industrielle et nécessite donc une meilleure compréhension des mécanismes mis en jeux pour lever ce verrou industriel. Cependant, l’étude de la dissolution d’un combustible MOX irradié afin d’identifier et modéliser les différentes étapes et mécanismes associés se heurte à la forte radiotoxicité d’un tel matériau et de la représentativité des échantillons disponibles. Afin de simplifier ces études et d'établir des modèles représentatifs, de nombreux essais ont été réalisés sur des composés modèles (UO2 et MOX non irradiés, par exemple). Parmi eux, des composés SIMfuel (U,Pu)O2 dopés jusqu’à 11 produits de fission visent à représenter la complexité chimique des combustibles irradiés. L’approche classique de fabrication de SIMfuel par mélange de réactifs en phase solide nécessite de frittage des pastilles de combustible à haute température (>1600°C). Afin de reproduire le comportement des produits de fission (réduction-oxydation, répartition, etc.) pour des combustibles irradiés à des températures plus faibles, une approche alternative a été développée en s'appuyant sur la synthèse d'oxydes par la voie hydroxyde. Cette méthode permet la précipitation simultanée et homogène de nombreux cations métalliques et d'abaisser significativement la température de frittage. Cette approche a déjà permis l’étude de SIMfuel intégrant des terres rares, des platinoïdes et du molybdène dans des conditions représentatives. Cependant, cette approche n’a encore jamais été mise en œuvre pour la synthèse de SIMfuel contenant à la fois du plutonium et l’ensemble des produits de fission pertinents pour l’étude de la dissolution.
L’objectif de cette thèse est de mettre en œuvre de telles synthèses, en s’appuyant sur les résultats récemment obtenus concernant la synthèse de MOx par voie hydroxyde. À cette fin, des SIMfuel seront synthétisés afin de représenter des combustibles de type MOx usés (SIMMOx). Pour représenter les différentes zones présentes dans le combustible usé, des SIMMOx avec différents ratios Pu/(U+Pu) seront considérés. Ces SIMMOx feront l’objet d’essais de dissolution pour caractériser leur comportement lors de cette étape.
FRITTAGE EN PHASE LIQUIDE TRANSITOIRE DE PASTILLES DE COMBUSTIBLES UOX ET MOX
Le sujet est en rapport avec la fabrication des combustibles UOX et MOX. Le principal objectif est d'identifier des couples de dopants permettant de former une phase liquide transitoire lors de l'étape de frittage des combustibles. Pour cela des calculs de diagrammes de phases par la méthode CALPHAD devront être réalisés, en prenant également en compte les impératifs liés à la phase d'irradiation une fois le combustible chargé en réacteur. Les couples les plus prometteurs seront ensuite évalués dans le cadre de la fabrication d'un combustible UOX et d'un combustible MOX. Les expériences à réaliser seront essentiellement: la préparation d'une matière pulvérulente, la mise en forme par pressage de cette matière sous la forme de cylindres représentatifs de pastilles de combustibles et l'étude du frittage à haute température de ces cylindres de formulation UOX et MOX. Après frittage, une étape très importante sera la caractérisation à l'échelle macroscopique et microscopique de ces pastilles. La première année de la thèse se déroulera sur le centre CEA de Cadarache au sein de l'ICPE Laboratoire des Combustibles Uranium. Les deux suivantes se dérouleront au sein de l'INB Atalante sur le site CEA de Marcoule. Le candidat travaillera au sein de deux installations uniques en Europe et pourra développer une expérience sur le travail en milieu nucléaire avec une approche très novatrices qui permettra la publication de résultats scientifiques originaux.
Etude de nouveaux concepts d’extracteurs liquide-liquide miniaturisables et parallélisables
Dans le processus de développement de procédés, leur miniaturisation représente un fort enjeu pour la RetD en amont.
En effet, la miniaturisation des procédés présente de nombreux avantages, en termes de réduction des volumes de matières premières, de gestion des déchets, possibilités de criblage, automatisation et de sécurité pour le personnel.
A ce jour, le procédé d’extraction liquide-liquide à contre-courant n’a pas de solution convaincante de miniaturisation alors que les applications sont nombreuses : en pharmacie, synthèse chimique, nucléaire ou médecine nucléaire.
Le CEA-ISEC à Marcoule a développé de nouveaux outils microfluidiques pour réaliser ces opérations de façon simple et opérationnelle en se basant sur la compréhension fine des instabilités des écoulements diphasiques dans des capillaires.
Ce sujet d’étude sur 3 ans propose :
- D’expérimenter, comprendre et modéliser finement les écoulements et transferts de masse
- D’optimiser puis transposer les phénomènes à des volumes industriellement impactants
- Publier et participer à des congrès internationaux
Le doctorant bénéficiera d’un apprentissage du monde de la recherche dans une équipe valorisant la qualité dans l’encadrement et le devenir de ses doctorants, dans une équipe pluridisciplinaire allant du génie des procédés à l’instrumentation et avec des projets allant de la recherche à l’industrie.
Des compétences générales en génie chimique et transfert de masse sont requises. Des compétences de collaboration avec nos partenaires académiques seront essentielles à la réussite du projet d’étude.
INFLUENCE D’UNE ETAPE DE GRANULATION MECANIQUE LORS DE LA FABRICATION D’UN COMBUSTIBLE MOX POUR RNR
Le sujet est en lien avec la fabrication du combustible MOX (U,Pu)O2 pour les réacteurs Réacteurs à Neutrons Rapide. Le procédé actuel intègre une étape de cobroyage des dioxydes d'uranium et de plutonium pour générer un milieu pulvérulent qui est ensuite mis en forme par pressage uniaxial pour générer des pastilles de combustibles cylindriques qui sont ensuite frittées à haute température. le milieu pulvérulent collecté présente une coulabilité médiocre ce qui limite les cadences de mise en forme par pressage. L'objectif de la thèse est donc d'évaluer l'impact d'une granulation mécanique du milieu pulvérulent sur la coulabilité, l'étape de pressage et la microstructure obtenue après frittage. Des tests de dissolution dans de l'acide nitrique seront également à réaliser sur certaines microstructures bien spécifiques. La thèse se basera sur un plan d'expériences formel élaboré au moyen d'un logiciel spécifique (JMP). La thèse se déroulera au sein de l'INB Atalante sur le site CEA de Marcoule. Le candidat travaillera au sein d'une installations unique en Europe et pourra développer une expérience sur le travail en milieu nucléaire avec une approche très novatrices qui permettra la publication de résultats scientifiques originaux.
Étude de l’endommagement mécanique des cellules à oxyde solide: impact des modes de fonctionnement et des profils de chargement sur la réponse électrochimique
Les cellules à oxyde solide (SOCs) sont des convertisseurs électrochimiques fonctionnant à hautes températures qui peuvent être utilisés pour produire soit de l’électricité en mode pile à combustibles (SOFC) ou de l’hydrogène en mode d’électrolyse (SOEC). Grâce à un large éventail de cas d’application, cette technologie est susceptible d’offrir de nombreuses solutions innovantes pour assurer la transition vers l’utilisation massive d’énergies renouvelables. Néanmoins, malgré tous leurs avantages, l'industrialisation à grande échelle de cette technologie reste entravée par la durabilité des SOCs. En effet, les SOCs sont limitées par de nombreux phénomènes physiques dont notamment l’endommagement mécanique des électrodes. Par exemple, la formation de microfissures dans l’électrode dite à hydrogène est une des sources majeures de dégradation. Les mécanismes mis en jeu ainsi que l’impact des microfissures sur les performances restent cependant mal connus à ce jour. Par une approche de modélisation multi-physique, cette thèse propose (i) de simuler les dommages dans la microstructure de l'électrode et (ii) de calculer leur impact sur la perte de performances. Une fois le modèle validé sur des expériences originales, une analyse de sensibilité sera conduite et des recommandations seront émises pour des électrodes optimisées.
Approche thermodynamique et expérimentale de la réactivité dans les systèmes multiconstitués Silicium-Métal-Carbone pour le brasage des céramiques
Le développement d'assemblages de matériaux à base de céramique joue un rôle fondamental pour l'innovation technologique dans de nombreux domaines d'ingénierie. Le choix des matériaux et du procédé d'assemblage doit permettre d'assurer un ensemble fonctionnel, fiable et durable, dont les propriétés répondent au cahier des charges de l'application.
La thèse s'inscrit dans le cadre du développement d'alliages de brasage optimisés pour l'assemblage de céramiques (prioritairement le carbure de silicium) envisagées pour diverses applications en environnements sévères dans le domaine de l'énergie en particulier. En effet, la conception de ces matériaux nécessite une bonne connaissance de la réactivité à l'interface alliage liquide / céramique. Dans ce contexte, la thèse contribuera au développement d'une approche thermodynamique et expérimentale afin de prédire et de comprendre la réactivité dans les systèmes multi-constitués Si-Métal-Carbone. Ce travail comprend une étude du mouillage et de la réactivité interfaciale d’alliages sélectionnés (expériences de mouillage et brasage, caractérisation fine des interfaces par différentes techniques telles que MEB-FEG, MET, diffraction de rayons X, XPS) avec l’appui de la modélisation thermodynamique à l’aide de la méthode CALPHAD. Ce travail à fort caractère expérimental sera réalisé dans un environnement dynamique et collaboratif.