Préconditionnement hybride CPU–GPU pour les simulations éléments finis sur architectures exascale

Les supercalculateurs exascale reposent sur des architectures hétérogènes combinant des CPU et des GPU, ce qui rend nécessaire une refonte des algorithmes numériques afin d’exploiter pleinement l’ensemble des ressources disponibles. Dans les simulations par éléments finis à grande échelle, la résolution des systèmes linéaires au moyen de solveurs itératifs et de préconditionneurs de type multigrille algébrique (AMG) constitue encore un goulet d’étranglement majeur en termes de performance.

L’objectif de cette thèse est d’étudier et de développer des stratégies de préconditionnement hybrides adaptées à ces systèmes hétérogènes. Le travail visera à analyser comment les techniques multiniveaux et AMG peuvent être structurées pour utiliser efficacement à la fois les CPU et les GPU, sans restreindre les calculs à un seul type de processeur. Une attention particulière sera portée à la distribution des données, au placement des tâches et aux interactions CPU–GPU au sein des solveurs multiniveaux.

D’un point de vue numérique, la recherche portera sur l’analyse et la construction des opérateurs multiniveaux, incluant les hiérarchies de grilles, les opérateurs de transfert inter-niveaux et les procédures de lissage, exécutés sur les CPU et les GPU disponibles. L’impact de ces choix sur la convergence, les propriétés spectrales et la robustesse des méthodes itératives préconditionnées sera étudié. Des critères mathématiques guidant la conception de préconditionneurs hybrides efficaces seront établis et validés sur des problèmes représentatifs en éléments finis, par exemple pour des applications en sismologie à l’échelle régionale.

Ces développements seront couplés à des stratégies de décomposition de domaine et de parallélisation adaptées aux architectures hétérogènes. Une attention particulière sera accordée aux transferts de données CPU–GPU, à l’utilisation de la mémoire et à l’équilibre entre noyaux liés au calcul et liés à la bande passante mémoire. L’interaction entre les choix numériques et les contraintes matérielles, telles que les hiérarchies mémoire CPU et GPU, sera conçue et développée afin d’assurer des implémentations scalables et efficaces.

Développement d'une approche macroscopique pour la dégradation à long terme des structures en béton sous irradiation

Dans les centrales nucléaires, la protection biologique en béton (CBS) est conçue à proximité de la cuve du réacteur. Cet élément, qui joue également le rôle de structure porteuse, absorbe donc les radiations. Il est ainsi exposé pendant la durée de fonctionnement de la centrale à des niveaux élevés de radiations qui peuvent avoir des conséquences à long terme. Ces radiations peuvent notamment entraîner une diminution des propriétés mécaniques des matériaux et de la structure. Etant donné son rôle clé, il est donc nécessaire de développer des outils et des modèles, pour prédire les comportements de telles structures à l'échelle macroscopique.
Sur la base des résultats existants obtenus à une échelle inférieure - simulations mésoscopiques, à partir desquelles une meilleure compréhension de l'effet de l'irradiation peut être obtenue, et des résultats expérimentaux qui viendront alimentés la simulation (propriétés des matériaux en particulier), il est proposé de développer une méthodologie macroscopique pour le comportement de la protection biologique en béton. Cette approche inclura différents phénomènes, parmi lesquels l'expansion volumétrique induite par le rayonnement, le fluage induit, les déformations thermiques et le chargement mécanique.
Les outils seront développés dans le cadre de la mécanique de l'endommagement. Les principaux défis numériques concernent la proposition et l'implémentation de lois d'évolution adaptées, et en particulier le couplage entre l'endommagement microstructural et l'endommagement au niveau structurel dû aux contraintes appliquées sur la structure.
Ce travail numérique pourra être réalisé dans un contexte de collaboration internationale. Il permettra au candidat retenu de développer un ensemble de compétences autour de la simulation de structures en béton armé en environnement complexe.

Alliages de lithium pour batteries tout solide à électrolyte sulfure

L’utilisation du lithium métal comme électrode négative permettrait d’augmenter fortement la densité d’énergie des batteries actuelles. Cependant, aujourd’hui, ce matériau conduit rapidement à des courts-circuits au cours des cycles de charge/décharge, notamment à cause la formation de dendrites et de l’instabilité de l’interface avec l’électrolyte. Les batteries tout-solide, en particulier avec des électrolytes sulfures, constituent une alternative prometteuse, mais les limitations du lithium métal persistent. Les alliages de lithium apparaissent alors comme une solution pour améliorer les propriétés mécaniques et interfaciales tout en conservant de bonnes densités énergétiques.
L’objectif de la thèse est de développer et sélectionner des alliages de lithium adaptés aux électrolytes sulfures pour des batteries de génération 4, puis de les intégrer dans des cellules tout-solide afin d’étudier les mécanismes de dégradation. Le travail couvre à la fois la synthèse des alliages, leur mise en forme compatible avec l’industrie et leur intégration en cellules. Les alliages seront synthétisés sous forme de films fins, caractérisés finement, puis testés électrochimiquement en cellules laboratoire et en cellules-poche. Enfin, les phénomènes de dégradation, notamment aux interfaces, seront étudiés grâce à des caractérisations avancées post-mortem.

Développement d'un nouveau schéma, basé sur la T-coercivité, pour discrétiser les équations de Navier-Stokes.

Dans le code TrioCFD, la discrétisation des équations de Navier-Stokes conduit à une résolution en trois étapes (cf. Chorin'67, Temam'68) : prédiction de la vitesse, résolution de la pression, correction de la vitesse. Si on veut utiliser un schéma de discrétisation en temps implicite, l'étape de résolution de la pression est particulièrement coûteuse. Ainsi, la plupart des simulations sont effectuées à l'aide d'un schéma en temps explicite, pour lequel le pas de temps dépend du pas du maillage, ce qui peut être fortement contraignant. On aimerait élaborer un schéma de discrétisation en temps implicite, en utilisant une formulation stabilisée du problème de Navier-Stokes basée sur la T-coercivité explicite (cf. Ciarlet-Jamelot'25). Il serait alors possible de résoudre directement un schéma implicite sans étape de correction, ce qui pourrait améliorer notablement les performances des calculs. Cela permettrait également d'utiliser la paire éléments finis P1-P0, économe en terme de degrés de liberté, mais instable pour une formulation classique.

Impact de la microstructure dans le dioxyde d’uranium sur de l’endommagement balistique et électronique

Au-delà de 40 GWd/tU, la périphérie des pastilles développe une microstructure spécifique appelée High Burnup Structure (HBS), caractérisée par la subdivision des grains initiaux en grains très fins d’environ 0,2 µm. À plus fort burnup, des sous-grains apparaissent également au centre, où la température est plus élevée. Ces transformations résultent de l’action combinée des dommages produits par les produits de fission, dont les pertes d’énergie varient entre contributions électroniques et nucléaires. Les pertes électroniques peuvent générer des traces et des réarrangements de dislocations, tandis que les pertes nucléaires créent des défauts interstitiels et lacunaires tels que boucles de dislocations ou bulles. L’effet couplé de ces mécanismes entraîne notamment un grossissement plus rapide des boucles et une diminution du dommage mesuré en spectroscopie Raman, dépendant possiblement de l’orientation cristalline.

Pour mieux comprendre ces phénomènes, des irradiations par faisceaux d’ions sur matériaux modèles, UO2 monocristallin, seront réalisées afin de déterminer le rôle de l’orientation cristalline. Les plateformes JANNuS-Saclay et MOSAIC permettront des irradiations en simple ou double faisceau afin d’étudier séparément et conjointement les pertes d’énergie nucléaire et électronique. Les échantillons seront caractérisés par RBS, NRA en mode canalisé, spectroscopie Raman (in situ et ex situ), ainsi que ponctuellement par microscopie électronique en collaboration avec le CEA Cadarache. Des expériences sur synchrotron pourront compléter l’étude pour analyser l’évolution des contraintes.

Développement d’outil de modélisation pour la corrosion en milieu poreux

Dans un contexte où la durabilité des matériaux s’avère fondamentale pour la sécurité des
installations et la promotion d’une transition énergétique durable, la maîtrise des phénomènes
de corrosion constitue un enjeu majeur pour des secteurs clés tels que le transport d’énergie
décarbonée via des conduites enterrées et le génie civil (hydrogène, nucléaire, infrastructures
souterraines). Le projet CORPORE s’inscrit dans cette problématique en proposant de
développer des modèles avancés de simulation numérique pour étudier la corrosion en milieu
poreux à l’aide de COMSOL Multiphysics. L’objectif scientifique et technologique principal consiste à élaborer une modélisation multiphysique intégrée des mécanismes électrochimiques et de transport au sein de matériaux
poreux : étude de l’influence couplée de la chimie, des propriétés du réseau poreux et des
interactions matériau-environnement sur l’initiation et la propagation de la corrosion. Cette
démarche permettra d’optimiser les stratégies de protection anticorrosion, de réduire les coûts
de maintenance et d’accroître la durée de vie des structures. Sur le plan de l’état de l’art, la
plupart des modèles se focalisent aujourd’hui sur des milieux homogènes et des approches compartimentées. Notre projet se démarque par l’intégration d’une modélisation mécanistique multi-échelles alliée à l’exploitation de données archéologiques pour une validation sur le long terme.

Evaluation de méthodes polytopales pour la CFD sur architecture GPU

Cette proposition de recherche se place dans le cadre de l’étude et de l’implémentation de méthodes polytopales pour résoudre les équations de la mécanique des fluides. Ces méthodes ont pour but de traiter des maillages les plus généraux possibles permettant de s’affranchir de contraintes géométriques de forme ou héritées de manipulations CAO comme des extrusions ou des assemblages faisant apparaître des non-conformités. Ces travaux se placent également dans le cadre du calcul intensif en vue de répondre à l’augmentation des moyens de calcul et en particulier du développement du calcul massivement parallélisé sur GPU.

L’objectif de cette thèse est donc de reprendre les travaux réalisés sur les méthodes de type polytopales existantes dans le logiciel TRUST que sont les méthodes "Compatible Discrete Operator" (CDO) et"Discontinuous Galerkin" (DG), de compléter leur étude notamment pour les opérateurs de convection et d’investiguer d’autres méthodes existantes dans la littérature comme les méthodes "Hybrid High Order"(HHO), "Hybridizable Discontinuous Galerkin" (HDG) ou "Virtual Element Method" (VEM).

Les objectifs principaux sont d’évaluer :
1. le comportement numérique de ces différentes méthodes sur les équations de Stokes/Navier-Stokes,
2. l’adaptabilité de ces méthodes à des architectures hétérogène telles que les GPU.

Optimisation topologique multi-matériaux robuste sous contrainte de fabricabilité appliquée au design d’aimant supraconducteur pour les IRMs haut champ

Les scanners IRM sont des outils très précieux pour la médecine et la recherche, dont le fonctionnement repose sur l'exploitation des propriétés des noyaux atomiques plongés dans un champ magnétique statique très intense. Celui-ci est généré, dans la quasi-totalité des scanner IRM, par un électroaimant supraconducteur.

La conception des électroaimants pour les IRM doit répondre à des contraintes très exigeantes sur l'homogénéité du champ produit. De plus, à mesure que le champ magnétique devient plus intense, les forces s'exerçant sur l'électroaimant augmentent et font émerger le problème de la tenue mécanique des bobinages. Enfin, la « fabricabilité » de l'électroaimant impose des contraintes sur les formes des solutions acceptables. La conception des électroaimants supraconducteurs pour les IRM demande donc un effort minutieux d'optimisation du design, soumise à des contraintes basée sur une modélisation multiphysique magnéto-mécanique.

Une nouvelle méthodologie innovante d'optimisation topologique multiphysique a été développée, sur la base d'une méthode à densité (SIMP) et d'un code de calcul par éléments finis. Celle-ci a permis de produire des designs d'aimants satisfaisant les contraintes sur l'homogénéité du champ magnétique produit et sur la tenue mécanique des bobinages. Toutefois, les solutions obtenues ne sont pas fabricables en pratique, tant du point de vue de la fabricabilité des bobines (enroulements des câbles) que de son intégration avec une structure portante (maintien des bobines par une structure en acier).

L'objectif de cette thèse est d'enrichir la méthode d'optimisation topologique amorcée en formalisant et en implémentant des contraintes de fabrication liées à manière de bobiner, aux contraintes résiduelles résultant d'une pré-tension des câbles au bobinage, et également à la présence d'un matériau de structure pouvant reprendre les efforts transmis par les bobines.

développement d'un procédé couplant la capture CO2 et son hydrogenation en carburant de synthèse (Negative Emission Technologie)

Jusqu’à récemment, les technologies de captage du CO2 étaient développées de manière disjointe de celles de valorisation du CO2 alors que le couplage entre l’étape de désorption du CO2 et la transformation chimique du CO2 généralement exothermique permettrait des gains énergétiques importants.
Des premières solutions couplées ont été proposées récemment mais sont essentiellement à température modérée (60-180°C) [1], voire récemment proches de 225°C [2].
L'objectif de cette thèse de doctorat est d'étudier, tant sur le plan expérimental que théorique un système couplé dans une gamme de température 250-325°C qui permet via une hydrogenation catalytique de type Fischer-Tropsch ou de méthanation l’obtention directe de produits à plus forte valeur ajoutée.
[1] Zhao, Lan, Hai-Yang Hu, An-Guo Wu, Alexander O. Terent’ev, Liang-Nian He, et Hong-Ru Li. « CO2 capture and in-situ conversion to organic molecules ». Journal of CO2 Utilization 82 (avril 2024)
[2] Koch, Christopher J., Zohaib Suhail, Alain Goeppert, et G. K. Surya Prakash. « CO2 Capture and Direct Air CO2 Capture Followed by Integrated Conversion to Methane Assisted by Metal Hydroxides and a Ru/Al2O3 Catalyst ». ChemCatChem 15, no 23

Réduction du ferraillage dans les structures en béton armé par calculs non linéaires et optimisations topologique et évolutionnaire

Les armatures en acier jouent un rôle majeur dans le comportement des structures en béton armé. Néanmoins, de forts conservatismes peuvent parfois être imposés par les règles de dimensionnement, questionnant la réalisation de l’ouvrage (faisabilité) ou sa viabilité (économique, environnementale…). C’est dans ce contexte que s’inscrivent les travaux de thèse. En s’appuyant sur des développements récents, ils viseront à proposer une approche de conception innovante, s’appuyant sur l’utilisation de calculs éléments finis non linéaires, en les associant à des algorithmes d’optimisation topologique (définition des directions de renforcement et des sections d’armatures) et évolutionnaire (positionnement des barres à section d’armatures fixées). La méthode devra permettre par un processus itératif d’aboutir à des solutions répondant à un optimal de conception. Au regard des objectifs à minimiser (qui pourront être contradictoires – coût, faisabilité, résistance, empreinte carbone…), elle orientera ainsi l’état des paramètres d’entrée à partir d’une analyse des sorties d’intérêt. L’application à des cas d’usage complexes, issus de la pratique (jonction poteaux-poutres par exemple) démontrera la pertinence de l’approche, par rapport à des méthodes de dimensionnement plus conventionnelles. Au terme de la thèse, le doctorant aura développé des compétences dans l’utilisation et le développement d’outils à l’état de l’art, allant de la simulation par éléments finis non linéaire jusqu’aux méthodes modernes d’optimisation par intelligence artificielle.

Top