Transition implicite/explicite pour la simulation numérique de problèmes d’Interaction Fluide Structure traités par des techniques de frontières immergées

Dans de nombreux secteurs de l’industrie, des phénomènes transitoires rapides interviennent dans des scénarii accidentels. Dans le cadre de l’industrie nucléaire, on peut citer, par exemple, l’Accident de Perte de Réfrigérant Primaire dans lequel une onde de détente susceptible de provoquer la vaporisation du fluide primaire et d’engendrer des dégâts structuraux se propage dans le circuit primaire d’un Réacteur nucléaire à Eau Pressurisée. De nos jours, la simulation de ces phénomènes transitoires rapides repose majoritairement sur des algorithmes d’intégration temporelle « explicites » car ils permettent de traiter de manière robuste et efficace ces problèmes qui sont généralement fortement non-linéaires. Malheureusement, du fait des contraintes de stabilité imposées sur les pas de temps, ces approches peinent à calculer des régimes permanents. Face à cette difficulté, dans de nombreux cas, on néglige les grandeurs cinématiques et les contraintes internes de l’état stationnaire du système considéré au moment de la survenue du phénomène transitoire simulé.

Par ailleurs, les applications visées font intervenir des structures solides en interaction avec le fluide, qui subissent de grandes déformations et peuvent éventuellement se fragmenter. Une technique de frontières immergées dite MBM (Mediating Body Method [1]) récemment développée au CEA permet de traiter de manière performante et robuste des structures à géométrie complexe et/ou subissant de grandes déformations. Cependant, ce couplage entre le fluide et la structure solide n’a été pensé que dans le cadre de phénomène transitoire « rapides » traités par des intégrateurs en temps « explicites ».

Le sujet de thèse proposé a pour objectif final d’enchaîner un calcul d’un régime nominal suivi d’un calcul transitoire dans un contexte d’interaction fluide/structure-immergée. La phase transitoire du calcul repose nécessairement sur une intégration temporelle explicite et fait intervenir la technique d’interaction fluide/structure MBM. Afin de générer un minimum de perturbations numériques lors de la transition entre les régimes nominal et transitoire, le calcul du régime nominal devra se faire sur le même modèle numérique que le calcul transitoire, et donc s’appuyer également sur une adaptation de la méthode MBM.

Des travaux récents ont permis de déterminer une stratégie efficace et robuste pour le calcul de régimes établis pour des écoulements compressibles, basée sur une intégration « implicite » en temps. Cependant, bien que générique, cette approche n’a pour le moment été éprouvée que dans le cas de gaz parfaits, et en l’absence de viscosité.

Les principaux enjeux techniques de cette thèse consistent, en se basant sur ces premiers travaux, à 1) valider et éventuellement adapter la méthodologie pour des fluides plus complexes (en particulier de l’eau), 2) introduire et adapter la méthode MBM pour l’interaction fluide-structure dans cette stratégie de calcul de régime établi, 3) introduire la viscosité du fluide, notamment dans le cadre de la méthode MBM développée initialement pour des fluide non-visqueux. A l’issue de ces travaux, des calculs de démonstration de transition implicite/explicite avec interaction fluide/structure seront mis en place et analysés.

A l’issue de la thèse, l’expérience de l’étudiant(e) pourra être valorisée vers des postes de chercheurs dans l’industrie (nucléaire, automobile, ferroviaire, aéronautique, médicale, …), et dans le réseau académique.

Un stage de fin d'études préparatoire à ces travaux de thèse peut être mis en place, selon les souhaits du candidat.

[1] Jamond, O., & Beccantini, A. (2019). An embedded boundary method for an inviscid compressible flow coupled to deformable thin structures: The mediating body method. International Journal for Numerical Methods in Engineering, 119(5), 305-333.

Modélisation/Simulation de la synthèse de revêtements anti-corrosion par procédé MOCVD pour la production d’énergie décarbonée

La durabilité des matériaux utilisés dans de nombreux domaines de production d’énergie est limitée par leur dégradation dans l’environnement de fonctionnement, environnement très souvent oxydant et à haute température. C’est notamment le cas des Electrolyseurs à Haute Température (EHT) pour la production d’hydrogène "vert" ou les gaines des combustibles des réacteurs nucléaires pour la production d’électricité. Afin d’améliorer la durée de vie de ces installations et ainsi préserver les ressources, des revêtements anti-corrosion peuvent/doivent être appliqués. Un procédé de synthèse de revêtements par voie vapeur réactive avec des précurseurs organométalliques liquides (DLI – MOCVD) apparait comme un procédé très prometteur.
L’objectif de cette thèse est de modéliser et de simuler le procédé de synthèse de revêtement par DLI-MOCVD pour les deux applications proposées ci-dessus. Les résultats des simulations (vitesse de déposition, composition du dépôt, homogénéité spatiale) seront comparés aux résultats expérimentaux réalisés sur des réacteurs « pilote » de grande échelle au CEA afin d’optimiser les paramètres d’entrée du modèle. A partir de ce dialogue simulation CFD/expériences, les conditions optimales de dépôt sur un composant échelle 1 seront proposées. Un couplage simulations CFD/Machine Learning pour accélérer le changement d’échelle et l’optimisation des dépôts à l’échelle 1 sera développé.

Amélioration des modèles de fissuration - Application aux matériaux vitrocéramiques sollicités par auto-irradiation

La vitrification des déchets nucléaires est une solution actuellement retenue pour le stockage des déchets nucléaires. Les matériaux vitrocéramiques, envisagés pour cette application, sont constitués d’une matrice de verre et d’inclusions de phases cristallines. Riches en éléments radioactifs, ces inclusions subissent une auto-irradiation ayant pour conséquence leur gonflement, susceptible d’engendrer une fissuration de la matrice de verre. Il est nécessaire de connaitre le taux d’inclusions maximal en dessous duquel le matériau ne fissure pas. Une étude expérimentale sur matériaux radioactifs, élaborés et suivis au court du temps, coûte excessivement cher et le développement d’une approche numérique pourrait permettre de mieux cibler les matériaux à étudier.
Suite aux travaux de thèse de Gérald Feugueur sur le sujet ayant mis en évidence une difficulté des modèles actuels à dissocier initiation et propagation des fissures, l’objectif principal est ici de développer et tester un modèle de champ de phase amélioré intégrant un critère de nucléation de fissure indépendant de l’élasticité, basé sur des modèles régularisés de plasticité adoucissante. L’implémentation du modèle sera réalisée en utilisant la méthode des éléments finis (code FEniCS) et une méthode alternative utilisant les transformées de Fourier (code AMITEX). En complément d’une validation croisée, l’implémentation la plus efficace sera retenue pour une application à des microstructures 3D de grande taille. Des échanges étroits avec le CEA Marcoule permettront de caractériser la microstructure des matériaux et une expérience en cours devrait permettre d’analyser la fissuration potentielle de ces matériaux sous auto-irradiation.

Compréhension et modélisation du transport des gaz dans un combustible UO2 présentant plusieurs familles de porosités

Les céramiques à base de dioxyde d’uranium UO2 constituent les combustibles nucléaires privilégiés des réacteurs en service en France. Afin de mener des études et expertises, le CEA développe des schémas numériques avancés pour la simulation prédictive du comportement de ces combustibles, s’appuyant sur une démarche d’amélioration continue des modèles et des lois de propriétés physiques des matériaux.
Les combustibles nucléaires de type UO2 sont des céramiques poreuses dont la microstructure dépend de leur procédé de fabrication (compaction de poudres), notamment en termes de forme et localisation de la porosité. Dans le cas du travail de recherche proposé ici, cette porosité est composée de deux familles (Meynard et al, 2018) : une famille de forme sphérique de petite taille et une famille de forme filamentaire de plus grande taille. La porosité filamentaire est pour partie connectée avec le milieu extérieur au combustible (porosité dite ouverte et percolante) et la porosité sphérique est plus isolée (porosité dite fermée). Les phénomènes physiques prenant place en réacteur entrainent une évolution de ces porosités et la création de produits de fission gazeux qui tendent à s’écouler dans le réseau poreux.
L’objectif de cette thèse est de développer un modèle d’écoulement de gaz en présence de : 1/ deux populations chimiques (xénon/krypton et hélium), 2/ deux populations de pores de topologie et d’échelle différentes, et 3/ dont les propriétés évoluent avec le temps.
Compte tenu de l’hétérogénéité de la microstructure, le modèle d’écoulement s’appuiera sur des outils numériques de génération de microstructures poreuses partiellement disponibles dans la littérature tels que les classiques pavages de Voronoï ou les plus récents processus de dépôt-compaction/diagénèse [Wojtacki et al, 2017]. L’effet des deux réseaux de porosité sur l’évolution de la perméabilité effective du milieu sera ensuite évalué en associant des méthodes analytiques et numériques de calcul d’écoulement. Une validation finale du modèle sera menée par comparaison avec des observations expérimentales récentes réalisées sur combustibles non irradiés et irradiés comprenant des mesures de porosités et de relâchement de gaz.
Ce travail de thèse sera mené au Service d’Etudes et Simulation du comportement des Combustibles du Département d’Etudes des Combustibles de l'institut IRESNE (CEA-Cadarache) et en collaboration avec le Laboratoire de Mécanique et Génie Civil (LMGC) de l'Université de Montpellier. Il pourra être valorisé par des publications et des présentations en conférences internationales.

Développement de polyhydroxyuréthanes biosourcés à forte réactivité pour la substitution des isocyanates dans les polyuréthanes

Les polyuréthanes sont des matériaux thermodurcissables fortement impactant sur le plan environnemental, et sont notamment synthétisés à partir d’isocyanates, substances très dangereuses (toxiques, sensibilisantes, voire CMR pour certaines) et visées par des restrictions REACH. Dans ce contexte, les polyhydroxyuréthanes présentent plusieurs avantages : (i) plus facilement biosourçables que les PU conventionnels, (ii) leur synthèse ne fait pas intervenir d’isocyanate, mais (iii) permet au contraire la séquestration de CO2. Néanmoins, les précurseurs utilisés dans la synthèse des PHU (carbonates cycliques et amines) présentent des réactivités beaucoup plus faibles que les isocyanates, induisant des temps de réticulation actuellement incompatibles avec les températures et les cadences de production attendues pour ce type de matériau.
Plusieurs axes de recherche ont été proposés pour optimiser les cinétiques de réticulation des PHU et concernent l’identification (i) de nouveaux précurseurs carbonates cycliques et amines chimiquement substitués en positions a ou ß de la fonction réactive, et (ii) de nouveaux catalyseurs performants permettant d’activer les deux types de précurseurs utilisés dans la synthèse.
Dans ce contexte, le doctorant aura pour mission de synthétiser de nouveaux précurseurs carbonates cycliques et amines, et d’étudier leur réactivité, afin d’identifier les conditions les plus favorables pour la synthèse de PHU hautement réactifs. Les résultats acquis durant ces travaux seront ensuite analysés par des modèles d’Intelligence Artificielle symbolique développés au CEA.
Ce projet de thèse s’inscrit dans le cadre du projet PHURIOUS, financé par le PEPR DIADEM, qui prévoit de coupler des techniques de synthèse et de caractérisation haut-débit en chimie des polymères, et des outils numériques en amont (calculs DFT, dynamique moléculaire) et en aval (IA) des étapes de synthèse.

Développement d’un outil de comparaison multi-critères des systèmes de stockage électrochimiques stationnaires

L’utilisation de systèmes de stockage stationnaire apparaît aujourd’hui incontournable pour accompagner l’évolution du réseau électrique et l’intégration croissante d’énergies renouvelables intermittentes comme le solaire ou l’éolien. Le choix d’une solution de stockage fait appel à de nombreux critères tels que les performances, la durée de vie mais aussi l’impact environnemental, la sécurité, les contraintes règlementaires, sans oublier l’aspect économique.
Le laboratoire dispose d’éléments de comparaison sur ces différents critères, via des études expérimentales et un retour d’expérience sur des systèmes existants. En outre, un premier outil logiciel a été développé pour l’évaluation de l’impact environnemental par ACV (analyse du cycle de vie). L’objectif de ce travail de thèse est d’intégrer ces différentes composantes dans un outil de comparaison plus large avec une approche multi-critères, en ciblant des cas d’étude précis et un nombre limité de technologies de stockage ayant atteint une maturité suffisante pour que les données disponibles soient fiables.

Aciers austénitiques à haute limite d’élasticité pour le nucléaire : conception numérique et étude expérimentale

La thèse s’inscrit dans un projet qui vise à concevoir de nouvelles chimies d’aciers inoxydables austénitiques pour le nucléaire qui soient spécifiquement adaptées aux conditions vues par la pièce en service et à son mode d’élaboration.
Plus précisément, elle concerne les aciers de boulonnerie obtenus par nitruration contrôlée de poudres ultérieurement densifiées par Compression Isostatique à Chaud. Les nuances actuelles présentent en effet des limitations liées à la corrosion sous contrainte, or la nitruration permet d'augmenter la quantité de chrome, ce qui a un effet bénéfique.
Il s'agit d'abord d'établir un cahier des charges et une liste de critères puis de réaliser une optimisation de composition multicritères par calculs CALPHAD dans le système Fe-Cr-Ni-Mo-X-N-C, afin de sélectionner des compositions prometteuses. On passera ensuite à l'élaboration du matériau: étude et modélisation de la nitruration des poudres, nitruration de lopins et densification, traitements thermiques. Une composition sera alors sélectionnée pour passer à une caractérisation poussée: propriétés mécaniques et mécanismes de déformation associés, comportement en corrosion. On s'attachera en particulier à démontrer l'intérêt de la nouvelle nuance par rapport à la nuance actuelle.

Méthodes de synthèse de turbulence pour les approches hybrides CFD URANS/LES dans la simulation multi-échelle des cœurs nucléaires

Description du problème : Les interactions fluide-structure dans les coeurs de réacteurs nucléaires résultent de mécanismes se produisant à différentes échelles spatiales. L'échelle des composants représente l'écoulement global à l'intérieur du cœur et est généralement simulée par des méthodes de milieux poreux. L'échelle locale représente l'assemblage combustible : elle nécessite des méthodes de résolution d'échelle CFD pour calculer des forces fluides cohérentes sur les structures, et elle présente un certain degré de couplage fluide-structure. Dans le but d'effectuer des simulations multi-échelles d'un cœur, l'échelle locale nécessite la génération de conditions limites à partir de l'échelle des composants. Cela ne peut être réalisé que par une génération synthétique de turbulence, basée sur les résultats d'écoulement à l'échelle des composants. Cependant, l'approche des milieux poreux utilisée à l'échelle des composants ne contient pas de détails sur les quantités turbulentes : le développement de nouvelles méthodes numériques est nécessaire pour générer une turbulence synthétique cohérente dans cette configuration.
Objectifs :
1. Identifier les approches hybrides URANS/LES appropriées pour les problèmes liés aux vibrations des assemblages de combustible
2. Identifier les paramètres de turbulence disponibles dans les méthodes de milieux poreux et explorer les approches de mise à l'échelle ascendante
3. Développer une méthode de synthèse de turbulence applicable à tout ensemble de combustible à l'intérieur d'un cœur
Résultats attendus :
1. Une nouvelle approche pour l'analyse des vibrations induites par les fluides basée sur une méthode multi-échelle
2. Clarifier les paramètres clés pour générer des conditions limites résolues par turbulence appropriées dans la configuration spécifique étudiée
3. Valider les nouvelles méthodes sur les configurations expérimentales disponibles

Validation de nouveaux schémas de calcul neutronique APOLLO3 des Réacteurs à Eau Légère à l’aide de simulations Monte Carlo multigroupes combinées à une approche perturbative

Le CEA développe depuis une douzaine d’années une plateforme de calcul neutronique déterministe multifilières, APOLLO3, qui commence à être utilisée pour des études de réacteur. Un schéma de calcul classique d’APOLLO3 en deux étapes repose sur une première étape de calculs d’assemblages en réseau infini à deux dimensions en transport fin générant des bibliothèques de sections efficaces multiparamétrées utilisées dans la deuxième étape de calcul de cœur 3D. Dans le cas d’un gros réacteur électrogène, le calcul de cœur nécessite des approximations qui peuvent être plus ou moins fortes suivant le type d’utilisation visée.

Les schémas de calcul de référence, type SHEM-MOC, et industriel, type REL2005, utilisés encore actuellement à l’étape réseau par le CEA et ses partenaires industriels, EDF et Framatome, ont été développés au milieu des années 2000 à partir des méthodes disponibles dans le code APOLLO2.8. Depuis, de nouveaux développements ont vu le jour dans le code APOLLO3 qui ont fait individuellement l’objet de travaux de vérification et validation démontrant leur capacité à améliorer la qualité des résultats à l’étape réseau. On peut citer, entre autre, les nouvelles méthodes d’autoprotection, sous-groupes et Tone, l’utilisation de sources linéaires surfaciques dans les calculs de flux en méthode des caractéristiques, la reconstruction de flux pour les calculs d’évolution isotopique, et nouveau maillage énergétique fin à 383 groupes.

L’objectif de cette thèse est de définir et valider deux nouveaux schémas de calculs réseau pour les applications REL qui intègrent tout ou partie de ces nouvelles méthodes, en visant des temps de calcul raisonnables pour le schéma de référence, et compatibles avec une utilisation en routine pour le schéma industriel (ces schémas ont vocation à être utilisés dans les futures chaînes de calculs du CEA et de ses partenaires). Les schémas de calcul mis en place seront validés à 2D sur des géométries issues de la suite de benchmarks VERA. La validation sera menée en suivant une approche innovante mettant en œuvre des calculs Monte Carlo à énergie continue ou multigroupes et une analyse perturbative des écarts.

Conception d’une expérience de validation du "crédit burnup" RNR dans le RJH

Le Réacteur nucléaire expérimental Jules Horowitz a pour mission première de répondre aux besoins d’irradiation de matériaux et combustibles pour l'industrie nucléaire actuelle et les générations ultérieures. Son démarrage est prévu autour de 2032. La conception des premières vagues de dispositifs expérimentaux du RJH est déjà très avancée, la priorité étant de répondre aux besoins industriels GEN2 et 3. En revanche, un champ reste ouvert à plus long terme, celui d’expériences indispensables à la filière GEN4, alors que l’on ne dispose pas de réacteur d’irradiation à spectre rapide.
L’objectif de la thèse est d’étudier la faisabilité d’expériences dans le RJH et d'autres réacteurs à eau, à des fins de validation de la perte de réactivité de combustibles RNR innovants.

La première partie du travail consiste à identifier et hiérarchiser les produits de fission (PF) contributeurs principaux à la perte de réactivité dans un RNR-Na typique. L'état des connaissances (données nucléaires JEFF4) sera dressé. La deuxième partie correspond à la mesure par activation et l'évaluation de la section efficace de capture des PF RNR stables en spectre rapide. Elle consiste à concevoir, spécifier, réaliser et mettre en œuvre un porte-cible PF-RNR « stables » dans le réacteur de l’ILL ou au poste de reprise du réacteur CABRI (avec écrans aux neutrons thermiques).
La troisième et dernière partie est la conception d’une expérience dans le RJH permettant de générer des PF-RNR et de les caractériser. Elle consiste à concevoir des essais d’irradiation de combustibles en conditions représentatives d’un RNR-Na, pour accéder à l’inventaire PF par spectrométrie sous eau dans le RJH et pesée intégrale de réactivité avant/après irradiation dans CABRI ou un autre réacteur disponible.

La thèse se déroule dans une équipe expérimentée dans la caractérisation neutronique et thermohydraulique du RJH.
Le/La doctorant/e sera aussi accompagné/e par plusieurs experts du département, au fur et à mesure des thématiques abordées. Il/Elle pourra valoriser ses résultats auprès de tous les partenaires de la filière (CEA, EDF, Framatome, Orano, Technicatome etc.).

Top