Purification des sels chlorures en vue de leur utilisation dans des systèmes de production d’énergie : développement de méthodes, compréhension et optimisation
Dans le cadre de la transition énergétique, les sels chlorures fondus reçoivent un intérêt croissant comme fluide caloporteur et combustible dans des systèmes de production d’énergie, tels que le solaire à concentration ou le nucléaire de IVème génération avec les réacteurs à sels fondus (‘molten salt reactors’ ou MSR). Toutefois, leur utilisation est pour l’instant limitée par les fortes vitesses de corrosion des matériaux de structure utilisés, corrosion qui semble en grande partie liée à la pureté du sel utilisé. En particulier, la maîtrise de la teneur en oxygène semble primordiale pour limiter la dissolution de nombreux éléments. Cependant, certains sels d’intérêt pour l’industrie nucléaire (ternaire NaCl-MgCl2-PuCl3 et son simulant NaCl-MgCl2-CeCl3) se trouvent être particulièrement difficile à purifier, du fait de leur forte affinité avec l’eau.
Il est donc nécessaire de comprendre la nature et la stabilité des espèces formées dans un système pollué (chlorures, oxydes, oxy-chlorures, hydroxy-chlorures) et de proposer des méthodes de purification des sels adaptées à un système industriel. Le candidat à la thèse aura ainsi pour objectifs de purifier et caractériser des mélanges de sels (binaires, ternaires et éventuellement quaternaires) à partir des méthodes disponibles dans les différents laboratoires impliqués par ce travail. La purification pourra avoir lieu à partir d’électrolyse, de précipitation, de filtration, de bullage de gaz chlorant ; la caractérisation pourra être réalisée par des méthodes électrochimiques, des sondes potentiométriques à oxygène, par spectroscopie Raman à haute température sous atmosphère inerte, ou encore par analyses chimiques et matériaux classiques.
L’étudiant réalisera son doctorat à l’institut sur les énergies IRESNE situé au CEA Cadarache (Bouches-du-rhône), au sein d’un laboratoire (LMCT) où seront installés la boîte à gants de purification et les moyens de mesure. Le LMCT a une grande expérience de la chimie des caloporteurs avancés (en particulier le sodium).
Des collaborations seront réalisées avec d’autres laboratoires du CEA, en particulier à Marcoule, et avec le LGC Toulouse disposant d’une expérience de plus de 20 ans dans les sels fondus (co-direction de thèse).
Le profil recherché est un ingénieur ou master recherche en électrochimie ou science des matériaux.
Forces d’impact sous écoulement : effet de lame fluide sur la dynamique d’un composant nucléaire
Dans le cadre de l’apport du nucléaire dans le mix énergétique décarboné, la maîtrise de la sûreté du fonctionnement des réacteurs est un enjeu de première importance. Dans l’éventualité d’un évènement sismique, la sollicitation dynamique subie par un cœur de réacteur pourrait entrainer des chocs entre assemblages de combustible. La présence de l’écoulement en cœur a un effet significatif sur le comportement dynamique des assemblages. Des essais récents ont montré un effet supplémentaire de l'écoulement sur les forces d'impact entre structures, attribuable à un phénomène de lame fluide.
L'objectif de cette thèse, en 3 volets, est de comprendre et caractériser ce phénomène de lame fluide avec la spécificité de la géométrie d'un assemblage de combustible.
Un volet sera consacré à des simulations CFD avec prise en compte de la déformation du domaine fluide par méthode sur grille mobile ALE (Arbitrary Lagrange-Euler) [1]. Il sera associé à des campagnes expérimentales ambitieuses pour mesurer jusqu'au choc l'effet du déplacement de la structure sur le champ de vitesse du fluide (méthodes optiques de type Particle Image Velocimetry [2]) et les forces d'impact résultantes. Les enseignements seront synthétisés au travers d’une modélisation analytique du phénomène.
L’étudiant(e) sera accueilli(e) au sein du laboratoire qui porte l’expertise en interactions fluide-structure sur le centre CEA de Cadarache. Il/elle sera intégré(e) à un environnement de recherche avec un rayonnement international (collaboration avec l’université de Georges Washington - USA), publiera ses travaux dans des journaux de première importance sur la thématique, et participera à des conférences internationales.
[1] A computationally efficient dynamic grid motion approach for Arbitrary Lagrange-Euler simulations, A. Leprevost, V. Faucher, and M. A. Puscas, Fluids, 8(5), 2023.
[2] Longo, L., Capanna, R., Ricciardi, G., & Bardet, P. (2024). Threshold of Keulegan-Carpenter instability within a 6 × 6 rod bundle, Experimental Thermal and Fluid Science
Modélisation sous-maille des transferts interfaciaux de masse et de chaleur appliqués à la condensation des essaims de bulles
Pour évaluer la sûreté des centrales nucléaires, le CEA développe et utilise des outils de simulation multi-échelles en thermohydraulique. L’application de la CFD aux écoulements diphasiques est limitée car elle nécessite de nombreux modèles difficiles à déterminer. Parmi nos autres ces outils, les simulations numériques directes (DNS) à interfaces résolues fournissent des données de référence inaccessibles par des moyens expérimentaux. C'est par exemple le cas des essaims de bulles, où les transferts de chaleur et de masse sont influencés par des effets collectifs complexes.
Afin de réduire le coût de ces simulations DNS, nous avons récemment développé une approche [1] qui montre des résultats prometteurs : elle consiste à coupler une résolution fine des transferts thermiques aux interfaces liquide-vapeur à un champ lointain calculé sur un maillage moins résolu. Pour élargir l'application de cette méthode à des cas plus industriels, il est nécessaire de prendre en compte les collisions entre bulles et d’adapter le modèle au changement de phase.
Nous proposons au cours de cette thèse de commencer par ce travail de modélisation physique et son implémentation en C++ dans notre code open-source de simulation TRUST/TrioCFD [2]. Ensuite, nous utiliserons cette nouvelle capacité pour réaliser une étude paramétrique et une analyse physique approfondie des phénomènes qui mèneraitmèneront, à terme, à une amélioration des modèles de transfert de chaleur dans les codes industriels.
[1] M. Grosso, G. Bois, A. Toutant, Thermal boundary layer modelling for heat flux prediction of bubbles at saturation: A priori analysis based on fully-resolved simulations, International Journal of Heat and Mass Transfer, Vol 222, 2024, https://doi.org/10.1016/j.ijheatmasstransfer.2023.124980
[2] Trio_CFD webpage : http://triocfd.cea.fr/recherche/modelisation-physique/two-phase-flows
Caractérisation élémentaire par activation neutronique pour l’économie circulaire
Dans le cadre de l’économie circulaire, un objectif majeur est de faciliter le recyclage des matières stratégiques nécessaires à l’industrie. Cela demande en priorité d’être capable de les localiser avec précision dans des composants industriels sans usage. La mesure nucléaire non destructive répond à cette objectif en se fondant sur l’analyse des gamma prompts d’activation neutronique (PGNAA). Cette approche consiste à interroger les échantillons à analyser avec un générateur électrique émettant des impulsions de neutrons rapides qui se thermalisent dans une enceinte en polyéthylène et graphite : on mesure entre les impulsion les rayonnements gamma de capture radiative. L’intérêt d’une telle approche tient dans le fait que des éléments de grande valeur comme le dysprosium ou le néodyme ont une section efficace de capture radiative par les neutrons thermiques élevée et que ces derniers peuvent sonder en profondeur d’importants volumes de matière (plusieurs litres).
Une précédente thèse a permis de démontrer la faisabilité de cette technique et a ouvert des pistes de recherche prometteuses, avec deux volets complémentaires pour progresser concrètement vers les objectifs pratiques de recyclage. Le premier prévoit d’étudier expérimentalement et par simulation la performance de la mesure des cascades gamma sur ces cas représentatifs des besoins industriels (taille et composition des objets, vitesse de mesure). Le second permettra d’enrichir et d’améliorer l'exploitation de la grande quantité d'information disponible à la suite des mesures de rayonnements gamma émis en cascade.
En pratique, le travail sera effectué dans le cadre d’une collaboration entre le CEA et l’institut FZJ (ForschungsZentrum Jülich), en Allemagne. Le premier volet de la thèse sera conduit au CEA au Laboratoire de Mesures Nucléaires. La seconde moitié de la thèse sera effectuée au FZJ (Jülich Centre for Neutron Science, JCNS). Ce volet allemand de la thèse fera l’objet d’expérimentations avec le dispositif FaNGaS du Heinz-Maier-Leibnitz Zentrum (MLZ) à Garching.
Mesure de débit dans une canalisation par détection des bruits thermiques
La mesure du débit est un élément clé pour la gestion des procédés, notamment dans les secteurs nucléaire et industriel. Toutefois, les méthodes actuelles de mesure nécessitent des installations complexes, particulièrement en cas de réglementations strictes, comme dans le nucléaire. Pour pallier ces contraintes, le CEA a développé une méthode innovante de mesure de débit dans des écoulements non isothermes reposant sur l’analyse les fluctuations thermiques. Cette technique, employant deux capteurs de température installés en amont et aval de la canalisation, est d’une mise en œuvre simple et peu contraignante. Les variations de température sont transportées par l’écoulement d’un capteur à l’autre et en comparant les signaux enregistrés par ceux-ci ;, il est possible de calculer le temps de transit thermique entre eux, ce qui permet de déterminer la vitesse de l’écoulement, et par conséquent, le débit. L’objectif de cette thèse est d’optimiser cette méthode en renforçant sa fiabilité. Pour ce faire, il s’agira d’étudier la propagation du bruit thermique au sein de l’écoulement et d’optimiser à la fois le type et la position des capteurs. Ces travaux seront menés au sein du Laboratoire de Thermohydraulique du Cœur et des Circuits et en collaboration avec le Laboratoire d’Instrumentation, Système et Méthode détenant des d’équipements expérimentaux de référence. Des simulations numériques viendront compléter les expérimentations pour valider les résultats obtenus. En parallèle, des approches basées sur l’intelligence artificielle seront explorées pour améliorer le traitement des signaux thermiques. Au terme de la thèse, le doctorant aura acquis de larges compétences dans le domaine expérimental et numérique et pourra faire valoir celles-ci.
Développement d'une approche macroscopique pour la dégradation à long terme des structures en béton sous irradiation
Dans les centrales nucléaires, la protection biologique en béton (CBS) est conçue à proximité de la cuve du réacteur. Cet élément, qui joue également le rôle de structure porteuse, absorbe donc les radiations. Il est ainsi exposé pendant la durée de fonctionnement de la centrale à des niveaux élevés de radiations qui peuvent avoir des conséquences à long terme. Ces radiations peuvent notamment entraîner une diminution des propriétés mécaniques des matériaux et de la structure. Etant donné son rôle clé, il est donc nécessaire de développer des outils et des modèles, pour prédire les comportements de telles structures à l'échelle macroscopique.
Sur la base des résultats existants obtenus à une échelle inférieure - simulations mésoscopiques, à partir desquelles une meilleure compréhension de l'effet de l'irradiation peut être obtenue, et des résultats expérimentaux qui viendront alimentés la simulation (propriétés des matériaux en particulier), il est proposé de développer une méthodologie macroscopique pour le comportement de la protection biologique en béton. Cette approche inclura différents phénomènes, parmi lesquels l'expansion volumétrique induite par le rayonnement, le fluage induit, les déformations thermiques et le chargement mécanique.
Les outils seront développés dans le cadre de la mécanique de l'endommagement. Les principaux défis numériques concernent la proposition et l'implémentation de lois d'évolution adaptées, et en particulier le couplage entre l'endommagement microstructural et l'endommagement au niveau structurel dû aux contraintes appliquées sur la structure.
Ce travail numérique pourra être réalisé dans un contexte de collaboration internationale. Il permettra au candidat retenu de développer un ensemble de compétences autour de la simulation de structures en béton armé en environnement complexe.
Étude des phénomènes d’autocatalyse lors de la dissolution en milieu nitrique – Apports des méthodes électrochimiques
Le procédé de recyclage des combustibles nucléaires, mis en œuvre en France à l’usine de La Hague, commence par une étape de dissolution en milieu nitrique du combustible usé, principalement constitué d’oxydes d’uranium et de plutonium. Dans une perspective de renouvellement des usines et de généralisation du recyclage des combustibles MOX, de nouveaux appareils innovants pour la dissolution sont étudiés. Le dimensionnement de tels appareils est limité à l’heure actuelle par l’absence de modèle complet de la dissolution des oxydes mixtes qui est une réaction très complexe (triphasique, auto-catalytique, non-homogène, etc.). Si des avancées ont été permises par les nombreux travaux précédents, un certain nombre de questions restent en suspens, concernant en particulier les mécanismes réactionnels mis en jeux et la nature du catalyseur.
Les méthodes électrochimiques (voltammétrie cyclique, spectroscopie d’impédance électrochimique, électrode tournante, etc.) n’ont jamais été mises en œuvre pour la compréhension de la dissolution mais devraient pourtant s’avérer pertinentes comme cela a déjà été démontré par les travaux réalisés sur ce sujet par le CEA Saclay dans le domaine de la corrosion. L’objectif de cette thèse sera donc d’appliquer ces méthodes expérimentales pour la première fois à la dissolution de combustibles nucléaires, dans une démarche de compréhension phénoménologique. Pour ce faire, l’étudiant(e) pourra s’appuyer sur les équipes et les installations des centres de Saclay et de Marcoule spécialisées respectivement dans les méthodes électrochimiques pour l’étude de la corrosion et dans la modélisation physico-chimique de la dissolution.
Cette étude transverse, impliquant science des matériaux, électrochimie et génie chimique, s’inscrira dans une démarche stimulante de recherche de fondamentale mais également dans un contexte industriel très dynamique. Les travaux seront réalisés dans un premier temps sur des matériaux modèles et nobles en inactif (sur le centre de Saclay) puis sur matériaux réels contenant de l’uranium et/ou du plutonium dans un second temps (sur le centre de Marcoule).
Compréhension des mécanismes de dissolution oxydante de (U,Pu)O2 en présence de platinoïdes
Le traitement des combustibles MOx, à base d’oxyde mixte d’uranium et de plutonium (U,Pu)O2, a pour objectif de recycler le plutonium. Le dioxyde de plutonium (PuO2) est difficile à dissoudre dans l’acide nitrique concentré. L’ajout d’une espèce très oxydante, telle que Ag(II), dans l’acide nitrique permet de solubiliser le plutonium avec des cinétiques de dissolution rapide : c’est la dissolution oxydante. Les produits de fission contenus dans le MOx irradié, notamment les platinoïdes, sont susceptibles de dégrader les performances de dissolution oxydante du plutonium via des réactions parasites. Pour le déploiement industriel de ce type de procédé, comprendre le rôle des platinoïdes sur la cinétique de cette dissolution s’avère donc primordial. Il n’existe cependant, à l’heure actuelle, que très peu de données sur ce sujet.
L’objectif de cette thèse est de contribuer à combler cette lacune. Le travail proposé consiste en une étude expérimentale paramétrique de complexité croissante : l’impact des platinoïdes sur la consommation d’Ag(II) sera d’abord étudié séparément, puis au cours de la dissolution de (U,Pu)O2. Ces résultats permettront de proposer un modèle cinétique de dissolution en fonction des paramètres étudiés.
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie ou chimie minérale, maitrisera un large panel de techniques expérimentales ainsi que des méthodes de modélisation pointues. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, au sein comme hors du secteur nucléaire.
Etude de l'altération du MOx et de composés modèles en condition d'entreposage sous eau
Ce sujet de thèse traite du recyclage du combustible nucléaire en France, avec un focus sur le multirecyclage de l’uranium et du plutonium des combustibles MOX, prévu d'ici 2040. Après leur passage en réacteur, les combustibles usés sont entreposés sous eau dans des piscines, où un défaut de gaine pourrait entraîner la contamination de l’eau et compliquer leur retraitement. Cette thèse propose d’étudier l'altération de ces combustibles ainsi que l’apparition des phases secondaires dans des conditions simulant l'entreposage.
Le travail est divisé en trois parties : la préparation de composés modèles, l’étude cinétique de l’altération chimique des matériaux modèles et industriels (MOX), et l’analyse des phases secondaires se formant en surface des combustibles irradiés. L'objectif est de mieux comprendre la stabilité de ces phases en fonction des conditions chimiques et d'irradiation, ainsi que les mécanismes de transformation. Les résultats permettront de développer des modèles de comportement des crayons défectueux sur plusieurs décennies, contribuant ainsi à une gestion plus sûre et efficace des combustibles irradiés.
Vers une méthode de caractérisation des propriétés électrocinétiques de particules dans l’eau à haute température
Dans le domaine de l’industrie et notamment de l’énergie, les circuits en eau liquide sont omniprésents. Les fluides, en interagissant avec les tuyauteries à base d’alliages métalliques, conduisent inévitablement à la formation de produits de corrosion. Des particules ainsi formées se déplacent dans les circuits sous l’effet d’un écoulement. En fonction des propriétés surfaciques physiques ou chimiques des parois, du milieu et des particules elles-mêmes, ces dernières peuvent s’agréger, se disperser, s’adsorber ou se déposer dans d’autres parties du circuit et conduire, par exemple, à des phénomènes d’encrassement et in fine à la perte de rendement des procédés industriels.
La prédiction du comportement des particules de petite taille (ordre de grandeur du µm) revêt donc un intérêt particulier. En effet, de par leur dimension, le comportement de ces dernières est régi par des forces d'origine électrique responsables de leur adhésion sur les surfaces. Les propriétés électrocinétiques et notamment le potentiel de surface pilotent ainsi le devenir de la particule et peuvent être définies par le biais du potentiel zêta. Cette grandeur caractérise un couple solide/solution et prend en considération à la fois la particule et ses propriétés chimiques de surface ainsi que la solution dans laquelle se trouve la particule.
Si la caractérisation du potentiel zêta à température ambiante est assez répandue, sa détermination à haute température se cantonne aujourd’hui, à quelques exemples (thèses de C. Cherpin 2022 [1] et de M. Barale 2006 [2], les études de VTT [3] et celle d’EDF avec l’université de Besançon 2002 [4] ainsi que le brevet de l’EPRI 1994 [5]). Le CEA (LC2R) a développé un moyen de mesure innovant en cours de brevetage pour explorer des techniques expérimentales peu développées et basées sur des hypothèses théoriques à approfondir.
A travers des approches multi-physique (écoulement, température, chimie, électrochimie, etc.) et multi-échelle (particules microscopiques influant sur un état macroscopique), l’objectif de la thèse est donc de réaliser les mesures des propriétés de surface de particules dans l’eau à haute température en fonction des conditions physico-chimiques (pH, RedOx et température), d’adapter les modèles existants ou en proposer de nouveaux puis de les valider avec les données expérimentales.
Les données ainsi obtenues ont vocation à alimenter les codes de simulation afin de mieux appréhender et maîtriser le vieillissement des circuits.
[1] C. Cherpin, PhD, 2022, Modelling the behaviour of colloidal corrosion products in the primary circuit of Pressurized Water Reactors
[2] M. Barale, PhD, 2006, Etude du comportement des particules colloïdales dans les conditions physico-chimiques du circuit primaire des réacteurs à eau sous pression
[3] E. Velin, Master’s Thesis, 2013, The effect of Temperature on the Zeta Potential of Magnetite Particles in Ammonia, Morpholine and Ethanolamine Solutions