Etude expérimentale et modélisation de la cinétique d’oxydation des oxydes mixtes U1-yPuyO2

Dans un soucis d’économie des ressources en uranium et de stabilisation de son inventaire en plutonium, la France étudie la possibilité de généraliser l’emploi des combustibles à base d’oxyde mixte d’uranium et de plutonium (MOX) au sein de son parc électronucléaire. Ce scénario impliquerait de faire évoluer l’outil industriel existant pour permettre le traitement des MOX usés à cadence industrielle, et rendre ainsi possible le multi-recyclage du plutonium. Relever ce défi nécessite le développement de procédés innovants, dont les bases scientifiques sont à construire.
L’oxydation des MOX usés via un traitement thermique adapté pourrait permettre de lever un des verrous technologiques identifiés, qui réside dans la séparation du combustible de sa gaine métallique en amont de l’étape de dissolution. L’idée est de tirer parti des transformations de phase se produisant au cours de l’oxydation du combustible pour provoquer son effondrement en poudre. Il n’existe toutefois à l’heure actuelle que peu de données sur l’oxydation des oxydes (U,Pu)O2. L’objectif de cette thèse est de contribuer à combler cette lacune. L’étudiant(e) retenu(e) devra dans un premier temps caractériser les phases formées au cours de l’oxydation des oxydes (U,Pu)O2, ainsi que la cinétique et les mécanismes réactionnels associés. Ces résultats lui permettront d’aboutir à la proposition d’un modèle phénoménologique reliant la cinétique de suroxydation aux grandeurs d’intérêt que sont la teneur en Pu, la pO2, la température et la durée du traitement thermique.
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie des matériaux, maitrisera un large panel de techniques expérimentales ainsi que des méthodes pointues de modélisation de la réactivité des solides. Cette double compétence lui ouvrira de nombreuses perspectives d’emploi en recherche académique ou en R&D industrielle, au sein comme hors du secteur nucléaire.

Effets des produits de fission et de la microstructure sur les mécanismes d’oxydation des combustibles (U,Pu)O2

Dans un souci d’économie des ressources en uranium et de stabilisation de son inventaire en plutonium, la France étudie la possibilité de généraliser l’emploi des combustibles à base d’oxyde mixte d’uranium et de plutonium (MOX) au sein de son parc électronucléaire. Ce scénario impliquerait de faire évoluer l’outil industriel existant pour permettre le traitement des assemblages de MOX irradiés à cadence industrielle, et de rendre ainsi possible le multi-recyclage du plutonium. Relever ce défi nécessite le développement de procédés innovants, dont les bases scientifiques sont à construire.
L’oxydation des MOX irradiés via un traitement thermique oxydant pourrait permettre de lever l’un des verrous technologiques identifiés, qui réside dans la séparation du combustible de sa gaine métallique en amont de l’étape de dissolution. Il n’existe toutefois à l’heure actuelle que peu de données sur l’oxydation des oxydes (U,Pu)O2 et encore moins sur l’impact des produits de fission et des propriétés microstructurales. L’objectif de cette thèse est de contribuer à combler ces lacunes. Pour cela l’étudiant(e) retenu(e) étudiera des échantillons (U,Pu)O2 présentant une microstructure identique aux combustibles MOX industriels ainsi que des échantillons (U,Pu)O2 dopés en produits de fission, qui simulent les combustibles irradiés comme montré par une thèse en cours dans le laboratoire. Les travaux expérimentaux s’appuieront majoritairement sur la réalisation d’expérimentations d’oxydation en température couplées à des analyses in situ et multi-échelle utilisant des techniques de laboratoire et le rayonnement synchrotron. Ces résultats permettront d’obtenir une description phénoménologique de l’impact des produits de fissions, de la pO2, de la température et de la durée du traitement thermique sur les mécanismes d’oxydation des combustibles MOX irradiés.
A l’issue de cette thèse, le(la) candidat(e), de formation initiale en physico-chimie des matériaux, maitrisera un large panel de techniques expérimentales. Ces compétences lui ouvriront de nombreuses perspectives professionnelles tant dans la recherche académique qu’en R&D industrielle, que ce soit dans le secteur du nucléaire que dans d’autre domaines.

Développement d’argyrodites à fort taux d’halogènes pour batterie tout-solide tout-sulfure

Les batteries tout-solides connaissent un regain d’intérêt depuis quelques années puisque cette technologie permet d’envisager une augmentation des densités d’énergie due à l’utilisation du lithium comme électrode négative mais également une augmentation de la sécurité des batteries par rapport à la technologie Li-ion. L’utilisation de sulfures comme matériaux d’électrode positive couplés à l’argyrodite comme électrolyte solide sont des systèmes intéressants à développer. En effet, les argyrodites atteignent des conductivités ioniques proches de celles des électrolytes liquides. De plus, la fenêtre de stabilité en cyclage des sulfures est proche de celle de l’argyrodite faisant de la technologie tout-sulfure une technologie prometteuse pour le développement des batteries tout-solides.
Dans une volonté d’améliorer les propriétés de conduction des argyrodites, des études récentes ont montré que la conductivité ionique dépend fortement de leur structure locale. La RMN du solide apparait ainsi comme une technique prometteuse afin de sonder les environnements locaux des noyaux cités et notamment de quantifier la variété d’environnements locaux différents favorisant une hausse de la conductivité ionique. Des compositions enrichies en halogénures semblant favoriser la conduction ionique, la synthèse de matériaux correspondant et leur structure seront étudiées.
La thèse s’articulera ainsi autour de deux axes principaux, l’étude de batteries tout-sulfures et la caractérisation fine d'argyrodite avec des structures locales contrôlées. En effet, des argyrodites riches en halogène seront développées et étudiées afin de déterminer l'influence des différents environnements locaux sur les propriétés de conduction.

Matériaux eco-conçus pour l’encapsulation des modules photovoltaïques flexibles de nouvelles générations

La durée de vie des dispositifs couches minces tel les dispositifs photovoltaïques Organiques (OPV) ou des modules Silicium (Si) photovoltaïques léger et/ou flexible de nouvelle génération est un point critique pour leur commercialisation. Il est notamment crucial de les encapsuler avec des matériaux hautement barrières aux gaz afin d’éviter leur dégradation selon différents mécanismes liés à l’insertion d’eau/oxygène qui peuvent être couplés à l’illumination. Cet objectif est d’autant plus complexe lorsque le dispositif, ainsi que son encapsulation, doivent être flexibles. Par ailleurs, l’éco-conception de cette nouvelle génération de modules flexibles amène aussi bien la question de la nature des matériaux d’encapsulation employés que celle de la fin de vie des matières constituant les modules. Par exemple, l’usage actuel de polymères fluorés pour l’encapsulation génère des produits toxiques en fin de vie et pourrait être substitué par l’usage de matériaux éco-conçus, potentiellement bio-sourcés, si les performance sont adaptées à la technologie photovoltaïque employée et à l’usage.
L’objectif de cette thèse sera tout d’abord d’étudier les propriétés physico-chimiques (barrières aux gaz, mécaniques, thermiques..) d’encapsulants bio-sourcés développés dans le cadre d’un projet national PEPR BioflexPV. Ces études concerneront aussi bien les matériaux de scellage que les capots flexibles. Par ailleurs, ces matériaux seront employés pour l’encapsulation de dispositifs réels OPV et Si flexibles afin d’en étudier la dégradation selon différentes conditions d’illumination, de température et d’hygrométrie. Ces études permettront de définir les mécanismes de dégradation mis en jeux selon la technologie photovoltaïque employée (OPV ou Si) et ainsi de définir les propriétés souhaitées pour les encapsulants bio-sourcés.

Elaboration, caractérisation et modélisation de films minces à base d’oxydes (Mn,Co)3O4 appliquées aux revêtements contre la corrosion et à la spintronique

Les spinelles de métaux de transition apparaissent spontanément lors de la corrosion généralisée des aciers ou alliages en milieu aqueux ou gazeux à haute température. Ces phases spinelles de type AB2O4 forment une couche de corrosion continue et régissent de ce fait les processus de corrosion car elles régulent la conductivité et le transport de matière entre le matériau et le milieu. Ces spinelles sont aussi déposés volontairement comme revêtements de protection contre les phénomènes de dégradation. En particulier, le système spinelle Mn-Co-O est très prometteur en tant que couche conductrice protectrice sur l’acier inoxydable ferritique utilisé pour fabriquer des interconnexions dans les piles à combustibles à oxyde solide pour la production d’hydrogène vert. Le choix de la composition de ces phases spinelle détermine évidement les caractéristiques de protection des revêtements. Ces caractéristiques sont particulièrement délicates pour les matériaux des électrolyseurs à haute température car le transport électronique doit être optimal (électrolyse importante) mais ne doit pas s’accompagner de transport de matière (diffusion des cations faible).
Paradoxalement, les propriétés de transport des spinelles de métaux de transition sont en général mal connues. Les mesures sont faites sur des couches de corrosion ou des revêtements de compositions variables, de faibles cristallinités, de microstructures complexes et de surcroit de faibles épaisseurs. Par ailleurs, les spinelles montrent des propriétés magnétiques et de désordre cationique en fonction de la composition largement ignorés alors qu’elles ont un impact fort sur le transport. Ce sont précisément ces propriétés magnétiques et de transport qui présentent un intérêt majeur dans le domaine de la spintronique. Ainsi, la manipulation de la composition chimique de ces oxydes de structure spinelle (normale, inverse ou mixte) offre une large gamme de propriétés magnétiques (ferrimagnétique, antiferromagnétique) et électroniques (semi-métallique, semi-conducteur, isolant). En particulier CoMn2O4, est prédit avoir une configuration magnétique complexe [1], reliée principalement à l’arrangement des cations Co2+ et Mn3+ dans les sites interstitiels, qu’il convient d’analyser en détail. Ces études physiques requièrent, à l’inverse des couches de corrosion, la synthèse de couches minces de composition et de cristallinité bien maitrisées.
L’objectif de la thèse est d’une part d’apporter les connaissances structurales et physiques des oxydes modèles de composition chimique (Mn,Co)3O4 pour contribuer à l’élaboration de diagramme de phase (Mn-Co-O) et d’autre part de développer un modèle de transport électronique reposant sur la relation entre ordre/désordre – propriétés magnétiques et résistivité pour les spinelles (Mn,Co)3O4 et à terme sur l’ensemble des spinelles (Fe,Cr,Mn,Co)3O4. Les investigations seront conduites sur des couches minces de composition parfaitement maitrisées, de grande cristallinité et seront complétées par des simulations numériques. L’ensemble des travaux expérimentaux et de modélisation s’appuiera sur les résultats des études précédentes sur les couches simples de spinelles de composition (Ni,Fe,Cr)3O4 [2,3].
La thèse comportera plusieurs volets :
- Croissance de couches minces et multicouches par MBE (Molecular Beam Epitaxy) (J.-B. Moussy)
- Caractérisations spectroscopiques par XPS (X-ray photoemission spectroscopy) (F. Miserque)
- Caractérisations structurales fines par DRX et par absorption X (XMCD) (P. Vasconcelos)
- Modélisation des spectres XPS et d’absorption X, et modélisation atomistique (A. Chartier)
- Caractérisations magnétiques par magnétométrie SQUID/VSM et électriques (J.-B. Moussy)
[1] Systematic analysis of structural and magnetic properties of spinel CoB2O4 (B= Cr, Mn and Fe) compounds from their electronic structures, Debashish Das, Rajkumar Biswas and Subhradip Ghosh, Journal of Physics: Condensed Matter 28 (2016) 446001.
[2] Stoichiometry driven tuning of physical properties in epitaxial Fe3-xCrxO4 thin films, Pâmella Vasconcelos Borges Pinho, Alain Chartier, Denis Menut, Antoine Barbier, Myrtille O.J.Y. Hunault, Philippe Ohresser, Cécile Marcelot, Bénédicte Warot-Fonrose, Frédéric Miserque, Jean-Baptiste Moussy, Applied Surface Science 615 (2023) 156354.
[3] Elaboration, caractérisation et modélisation de films minces et multicouches à base d’oxydes (Ni,Fe,Cr)3O4 appliquées à la corrosion et à la spintronique, A. Simonnot, thèse en cours.

Étude d’un procédé de lavage innovant pour le traitement de composants sodés issus d’installations utilisant du sodium liquide comme caloporteur

Le sodium est utilisé comme fluide caloporteur dans les réacteurs nucléaires à neutrons rapides. Compte tenu des températures de fonctionnement de ces installations, toutes les surfaces en contact avec le sodium liquide restent mouillées par du sodium résiduel une fois les circuits vidangés et égouttés. Le traitement de ce sodium résiduel est impératif pour assurer la sécurité des interventions sur les composants et structures dans un processus de démantèlement. Le procédé de référence pour cette action est le lavage à l’eau dans un puits de lavage dédié. Ce procédé met en œuvre une réaction du sodium avec l’eau sous différentes formes, en maîtrisant la cinétique de réaction, qui est instantanée et fortement exothermique sans contrôle de la mise en contact des réactifs.
Une étude exploratoire menée au CEA a fait l’objet d’une thèse soutenue en 2014 sur l’utilisation de sels pour mitiger la cinétique de réaction. Le laboratoire d’Études des technologies Sodium et Caloporteurs avancés (DES/IRESNE/DTN/STCP/LESC) possède ainsi des installations de R&D, instrumentées et dédiées à l’étude des procédés de lavage du sodium et équipées des fonctionnalités d’un puits de lavage industriel, telles que des rampes d’aspersion, des buses d’atomisation et un dispositif d’immersion.
Le principal objectif scientifique de la nouvelle thèse proposée est à présent d’identifier, de comprendre et de modéliser les mécanismes physico-chimiques impliqués dans la cinétique réactionnelle sodium-eau en présence de sels. Ces travaux permettront de limiter ou d’éviter les phénomènes d’onde de pression ou d’explosion lors du traitement du sodium résiduel des circuits de réacteurs nucléaires à neutrons rapides lors de leur assainissement-démantèlement. Le doctorant aura pour mission de définir les plans d’expérience, de participer activement à la réalisation des campagnes d’essai, d’exploiter les résultats et de proposer une interprétation des phénomènes observés (cinétiques, pic de pression, élévation locale de température…). Les essais auront pour objectif d’acquérir des données de thermodynamique et de cinétique de réaction fiables, tels que les temps de réaction, la variation de la pression dynamique, l’élévation de la température, la composition des phases gaz et liquide, la spéciation en phase liquide et la visualisation de la phénoménologie via caméra rapide. Des outils de modélisation seront mis à sa disposition pour établir et simuler un modèle de cinétique réactionnelle. À terme, les travaux proposés permettront de qualifier le procédé pour une application industrielle dans le domaine de l’assainissement/démantèlement à fort enjeu pour la filière nucléaire française.
En complément de l’expérience acquise dans le domaine du démantèlement de systèmes nucléaires, le travail proposé ouvre des perspectives professionnelles en particulier vers les centres de recherche et les départements de R&D dans l’industrie.
Un stage de master 2 est proposé par l’équipe en complément de la thèse.

Simulation de l'évolution des microstructures de dislocations dans UO2 : impact de la montée des dislocations à haute température

La neutralité carbone passe par le développement de systèmes de production d’énergie bas carbone incluant le nucléaire. L’analyse de sûreté du fonctionnement des réacteurs nucléaires porte sur le confinement des produits de fission dans toutes les situations de fonctionnement, avec notamment l’intégrité de la première barrière composée des éléments combustibles. Pour les concepts de type crayon, constitués d’un empilement de pastilles combustibles dans une gaine métallique, le comportement mécanique des pastilles en dioxyde d'Uranium (UO2) joue un rôle important dans l'évaluation de l'intégrité de la gaine. Ainsi, en situation de transitoire de puissance, le contact combustible-gaine accroît les sollicitations mécaniques de la gaine et le fluage du combustible peut permettre une accommodation des déformations de gonflement réduisant ainsi les contraintes appliquées à la gaine. Un des enjeux porte sur la compréhension et la prédiction de ce phénomène de fluage de l’UO2 avec les mécanismes qui le pilotent à l’échelle microstructurale polycristalline, notamment impliquant les dislocations.
L’objectif de la thèse sera de construire une méthode de simulation indispensable à l’acquisition de résultats de référence en support à la modélisation multi-échelle du comportement mécanique du combustible à haute température fortement dépendant du phénomène de montée des dislocations. Ce type de démarche de simulation et les résultats qui seront obtenus seront particulièrement novateurs et n’ont encore jamais été mis en œuvre dans le cas des combustibles oxyde pour lesquels l’évolution de la microstructure de dislocation à également un impact fort sur le comportement des produits de fission gazeux en plus des aspects mécaniques étudiés dans la thèse. Pour cela le doctorant développera un schéma de calcul, basée sur le couplage entre un code de dynamique des dislocations (NUMODIS) et un code de résolution des équations aux dérivées partielles non linéaires par FFT (AMITEX-FFTP). Ceci permettra de décrire l’évolution d’une microstructure de dislocations sous l’effet de la montée des dislocations (NUMODIS) induite par la diffusion des lacunes (AMITEX-FFTP). Ensuite, des simulations basées sur cette approche permettront de quantifier les phénomènes de restauration de la densité des dislocations stockées avec l’effet des mécanismes de montée dans différentes configurations (températures, contraintes…). Ce travail permettra in fine d’améliorer et valider la modélisation micromécanique existante et mise en œuvre dans la plateforme de simulation PLEIADES du CEA.
Cette thèse sera réalisée dans le cadre d’un co-encadrement entre le Département d'Etude des Combustibles (Institut IRESNE, CEA Cadarache) et Le Département de recherche sur les Matériaux et la Physico-chimie (Institut ISAS, CEA Saclay), et d’une collaboration avec l’IM2NP d’Aix Marseille Université. Les travaux de thèse seront menés au sein des laboratoires LM2C (Cadarache) et LC2M (Saclay) dans un environnement donnant accès à une grande expertise sur la modélisation multiéchelle des matériaux. Les travaux de recherche seront valorisés par des publications et des participations à des conférences internationales dans le domaine des matériaux.

Etude et utilisation de verres à l’uranium pour la détection des neutrons par voie optique

Le Laboratoire de Dosimétrie, Capteurs et Instrumentation du CEA/IRESNE Cadarache, développe, fabrique et exploite des détecteurs de flux neutroniques qui sont utilisés à proximité immédiate ou à l’intérieur des cœurs des réacteurs nucléaires. En plus des détecteurs classiques (chambres à fissions, collectrons…), le LDCI mène des recherches actives sur des voies de mesures innovantes telles que des détecteurs optiques, semi-conducteurs, scintillateurs fibrés… Avec cette thèse, le laboratoire souhaite explorer le potentiel de verres dopés à l’Uranium. Ces verres sont connus pour produire une vive fluorescence sous différents rayonnements. L’idée maitresse est d’essayer d’exploiter cette fluorescence pour détecter les réactions de fission qui sont induites dans le verre lorsqu’il est exposé à un flux de neutrons. Cela permettrait de développer une nouvelle génération de détecteurs de neutrons par voie optique à mi-chemin entre une chambre à fission et un scintillateur.
Le travail de thèse sera articulé autour de deux grand axes :
- d’une part la compréhension fine des mécanismes de fluorescence, ainsi que la synthèse de verre à l’uranium aux propriétés optimisés pour nos besoins (sensibilité, spectre d’émission, vecteur isotopique…). La synthèse sera effectuée dans des laboratoires partenaires ;
- d’autre part le développement d’une instrumentation dédiée, probablement sous la forme de fibres optiques, pour tester ces prototypes en réacteur.

Quantification des incertitudes et analyse de sensibilité pour les vibrations de structures minces sous écoulement axial

Les phénomènes d'interaction fluide-structure (IFS) sont omniprésents dans les installations industrielles où des structures sont en contact avec un fluide sous écoulement qui exerce un chargement mécanique. Pour des structures élancées et souples, l’IFS peut induire des phénomènes vibratoires et des instabilités mécaniques à l’origine de grandes amplitudes de déplacements. L'industrie nucléaire est confrontée à cette problématique, notamment au niveau des tuyauteries, des assemblages de combustible, des grappes de commande ou encore des générateurs de vapeur. Dans le cadre de la prévention et de la maîtrise des risques vibratoires, les codes de calcul sont des outils essentiels, qui, à partir de plusieurs paramètres d’entrée, permettent d’accéder à des quantités d’intérêt (variables de sortie) souvent inaccessibles expérimentalement. Cependant, la connaissance des paramètres d’entrée est parfois limitée à cause d’un manque de caractérisation (erreur de mesure ou manque de données) ou tout simplement par la nature intrinsèquement aléatoire de ces paramètres. Il est alors nécessaire de prendre en compte des incertitudes sur les paramètres d’entrée et d’effectuer une analyse de sensibilité pour les variables de sortie.

Dans ce cadre, l'objectif de cette thèse est d’analyser la réponse vibratoire d'une structure mince dont les caractéristiques géométriques sont incertaines (structure présentant un défaut de courbure, localisé ou global). Nous chercherons en particulier à comprendre comment les incertitudes géométriques affectent la stabilité de la structure flexible. Cette caractérisation se fera de manière théorique et numérique. Les calculs numériques seront réalisés avec le code TrioCFD, développé par le CEA. En fonction de l’avancée des travaux, l’effet de différentes incertitudes (liées par exemple aux caractéristiques matérielles de la structure ou aux propriétés de l’écoulement incident) pourront être envisagées. In fine, le travail réalisé dans le cadre de cette thèse permettra d’améliorer la prédiction et le contrôle des vibrations de structures minces sous écoulement axial.

Les interactions fluides-structures et les instabilités associées sont présentes dans de nombreux domaines, que soit en aéronautique avec les phénomènes de flottement d’ailes, dans le nucléaire avec les vibrations de composants sous écoulements, en biologie pour la compréhension de la locomotion animale sous-marine, dans la botanique pour la compréhension des croissances végétales, dans le sport pour l’optimisation des performances, dans la récupération d’énergie des structures flexibles excitées par un fluide. La thèse permettra à l’étudiant d’acquérir de nombreuses compétences en mathématiques, en simulation numérique, en mécanique des fluides, en mécanique des solides, de se former à la recherche dans le domaine de la mécanique des fluides et des solides, pour in-fine une carrière dans ce domaine, que ce soit dans le monde académique ou de la R&D appliquée dans de nombreux domaines d’intérêt pour les scientifiques et plus généralement pour la société. Un sujet de stage de 6 mois est également proposé en préambule de la thèse (optionnel).

Niveau exigé : Master 2 / Dernière année d’École d’Ingénieur.
Formation exigée : mécanique des milieux continus, résistance des matériaux (théorie des
poutres et des plaques), mécanique des fluides, interaction fluides-structures, simulation
numérique (éléments finis).

Solveur Intégrodifférentiel HPC Parallèle pour la Dynamique des Dislocations

Contexte : La compréhension du comportement des métaux à forts taux de déformation [4] (entre 104 et 108 s-1) représente un défi scientifique et technologique considérable. Cette déformation irréversible (plastique) est due à la présence de défauts linéaires d'alignement cristallin : les dislocations, qui interagissent via le champ élastique à longue portée et par interactions de contact.
Actuellement, le comportement des métaux à forts taux de déformation ne sont accessibles expérimentalement que par chocs laser. D’où la nécessité d’un outil de simulation. Deux grands types d’approches sont possibles : la dynamique moléculaire, et les simulations élastodynamiques. Cette thèse s’inscrit dans le second type d’approche, capitalisant sur nos travaux récents [1, 2] qui ont permis les premières simulations numériques de l’équation de Peierls-Nabarro Dynamique (PND) [5]. Celle-ci décrit des phénomènes intervenant à l’échelle de la dislocation.
PND est une équation intégrodifférentielle non-linéaire qui présente une double difficulté : la non-localité en temps et en espace des opérateurs. Nous l’avons simulée pour la première fois grâce à une stratégie numérique efficace [1], issue de [6]. Mais la nature mono-processeur de son implantation actuelle constitue un verrou, limitant fortement la taille du système et l’étude de son comportement en temps long.

Sujet de thèse : Les objectifs de cette thèse sont de deux natures :
- Numérique. Sur la base algorithmique développée dans [1], implémenter un solveur HPC (Calcul Haute Performance) parallélisé en espace et en temps, avec mémoire distribuée.
- Physique. Grâce au code développé, éclaircir des points cruciaux relatifs à la phénoménologie des dislocations en régime dynamique rapide. L’exploitation des résultats numériques requerra des techniques de traitement de données et de statistiques - potentiellement assistées par de l’IA.
En fonction de l’avancement, il sera possible d’appliquer la méthode numérique développée aux phénomènes de fissuration dynamique [3].

Profil du candidat : Le sujet de thèse proposé est pluridisciplinaire, à la croisée des chemins entre simulation numérique, physique des dislocations et de la propagation de fissures, et traitement statistique. Le candidat devra d’abord posséder une solide formation en calcul scientifique appliqué aux équations aux dérivées partielles et un gout prononcé pour les applications physiques. La maîtrise du C++, avec des compétences en OpenMP et MPI seraient fortement appréciées. Des connaissances en mécanique des milieux continus seraient aussi vu comme un plus.
La thèse se déroulera au Département d'Etudes des Combustibles (Institut IRESNE, CEA/DES, centre de Cadarache), avec des déplacements réguliers en région parisienne pour la collaboration avec le CEA/DAM et le CEA/DRF.

[1] Pellegrini, Josien, Shock-driven motion and self-organization of dislocations in the dynamical Peierls model, soumis.
[2] Josien, Etude mathématique et numérique de quelques modèles multi-échelles issus de la mécanique des matériaux. Thèse. (2018).
[3] Geubelle, Rice. J. of the Mech. and Phys. of Sol., 43(11), 1791-1824. (1995).
[4] Remington et coll., Metall. Mat. Trans. A 35, 2587 (2004).
[5] Pellegrini, Phys. Rev. B, 81, 2, 024101, (2010).
[6] Lubich & Schädle. SIAM J. on Sci. Comp. 24(1), 161-182. (2002).

Top