Simulation de l'évolution des microstructures de dislocations dans UO2 : impact de la montée des dislocations à haute température

La neutralité carbone passe par le développement de systèmes de production d’énergie bas carbone incluant le nucléaire. L’analyse de sûreté du fonctionnement des réacteurs nucléaires porte sur le confinement des produits de fission dans toutes les situations de fonctionnement, avec notamment l’intégrité de la première barrière composée des éléments combustibles. Pour les concepts de type crayon, constitués d’un empilement de pastilles combustibles dans une gaine métallique, le comportement mécanique des pastilles en dioxyde d'Uranium (UO2) joue un rôle important dans l'évaluation de l'intégrité de la gaine. Ainsi, en situation de transitoire de puissance, le contact combustible-gaine accroît les sollicitations mécaniques de la gaine et le fluage du combustible peut permettre une accommodation des déformations de gonflement réduisant ainsi les contraintes appliquées à la gaine. Un des enjeux porte sur la compréhension et la prédiction de ce phénomène de fluage de l’UO2 avec les mécanismes qui le pilotent à l’échelle microstructurale polycristalline, notamment impliquant les dislocations.
L’objectif de la thèse sera de construire une méthode de simulation indispensable à l’acquisition de résultats de référence en support à la modélisation multi-échelle du comportement mécanique du combustible à haute température fortement dépendant du phénomène de montée des dislocations. Ce type de démarche de simulation et les résultats qui seront obtenus seront particulièrement novateurs et n’ont encore jamais été mis en œuvre dans le cas des combustibles oxyde pour lesquels l’évolution de la microstructure de dislocation à également un impact fort sur le comportement des produits de fission gazeux en plus des aspects mécaniques étudiés dans la thèse. Pour cela le doctorant développera un schéma de calcul, basée sur le couplage entre un code de dynamique des dislocations (NUMODIS) et un code de résolution des équations aux dérivées partielles non linéaires par FFT (AMITEX-FFTP). Ceci permettra de décrire l’évolution d’une microstructure de dislocations sous l’effet de la montée des dislocations (NUMODIS) induite par la diffusion des lacunes (AMITEX-FFTP). Ensuite, des simulations basées sur cette approche permettront de quantifier les phénomènes de restauration de la densité des dislocations stockées avec l’effet des mécanismes de montée dans différentes configurations (températures, contraintes…). Ce travail permettra in fine d’améliorer et valider la modélisation micromécanique existante et mise en œuvre dans la plateforme de simulation PLEIADES du CEA.
Cette thèse sera réalisée dans le cadre d’un co-encadrement entre le Département d'Etude des Combustibles (Institut IRESNE, CEA Cadarache) et Le Département de recherche sur les Matériaux et la Physico-chimie (Institut ISAS, CEA Saclay), et d’une collaboration avec l’IM2NP d’Aix Marseille Université. Les travaux de thèse seront menés au sein des laboratoires LM2C (Cadarache) et LC2M (Saclay) dans un environnement donnant accès à une grande expertise sur la modélisation multiéchelle des matériaux. Les travaux de recherche seront valorisés par des publications et des participations à des conférences internationales dans le domaine des matériaux.

Etude et utilisation de verres à l’uranium pour la détection des neutrons par voie optique

Le Laboratoire de Dosimétrie, Capteurs et Instrumentation du CEA/IRESNE Cadarache, développe, fabrique et exploite des détecteurs de flux neutroniques qui sont utilisés à proximité immédiate ou à l’intérieur des cœurs des réacteurs nucléaires. En plus des détecteurs classiques (chambres à fissions, collectrons…), le LDCI mène des recherches actives sur des voies de mesures innovantes telles que des détecteurs optiques, semi-conducteurs, scintillateurs fibrés… Avec cette thèse, le laboratoire souhaite explorer le potentiel de verres dopés à l’Uranium. Ces verres sont connus pour produire une vive fluorescence sous différents rayonnements. L’idée maitresse est d’essayer d’exploiter cette fluorescence pour détecter les réactions de fission qui sont induites dans le verre lorsqu’il est exposé à un flux de neutrons. Cela permettrait de développer une nouvelle génération de détecteurs de neutrons par voie optique à mi-chemin entre une chambre à fission et un scintillateur.
Le travail de thèse sera articulé autour de deux grand axes :
- d’une part la compréhension fine des mécanismes de fluorescence, ainsi que la synthèse de verre à l’uranium aux propriétés optimisés pour nos besoins (sensibilité, spectre d’émission, vecteur isotopique…). La synthèse sera effectuée dans des laboratoires partenaires ;
- d’autre part le développement d’une instrumentation dédiée, probablement sous la forme de fibres optiques, pour tester ces prototypes en réacteur.

Quantification des incertitudes et analyse de sensibilité pour les vibrations de structures minces sous écoulement axial

Les phénomènes d'interaction fluide-structure (IFS) sont omniprésents dans les installations industrielles où des structures sont en contact avec un fluide sous écoulement qui exerce un chargement mécanique. Pour des structures élancées et souples, l’IFS peut induire des phénomènes vibratoires et des instabilités mécaniques à l’origine de grandes amplitudes de déplacements. L'industrie nucléaire est confrontée à cette problématique, notamment au niveau des tuyauteries, des assemblages de combustible, des grappes de commande ou encore des générateurs de vapeur. Dans le cadre de la prévention et de la maîtrise des risques vibratoires, les codes de calcul sont des outils essentiels, qui, à partir de plusieurs paramètres d’entrée, permettent d’accéder à des quantités d’intérêt (variables de sortie) souvent inaccessibles expérimentalement. Cependant, la connaissance des paramètres d’entrée est parfois limitée à cause d’un manque de caractérisation (erreur de mesure ou manque de données) ou tout simplement par la nature intrinsèquement aléatoire de ces paramètres. Il est alors nécessaire de prendre en compte des incertitudes sur les paramètres d’entrée et d’effectuer une analyse de sensibilité pour les variables de sortie.

Dans ce cadre, l'objectif de cette thèse est d’analyser la réponse vibratoire d'une structure mince dont les caractéristiques géométriques sont incertaines (structure présentant un défaut de courbure, localisé ou global). Nous chercherons en particulier à comprendre comment les incertitudes géométriques affectent la stabilité de la structure flexible. Cette caractérisation se fera de manière théorique et numérique. Les calculs numériques seront réalisés avec le code TrioCFD, développé par le CEA. En fonction de l’avancée des travaux, l’effet de différentes incertitudes (liées par exemple aux caractéristiques matérielles de la structure ou aux propriétés de l’écoulement incident) pourront être envisagées. In fine, le travail réalisé dans le cadre de cette thèse permettra d’améliorer la prédiction et le contrôle des vibrations de structures minces sous écoulement axial.

Les interactions fluides-structures et les instabilités associées sont présentes dans de nombreux domaines, que soit en aéronautique avec les phénomènes de flottement d’ailes, dans le nucléaire avec les vibrations de composants sous écoulements, en biologie pour la compréhension de la locomotion animale sous-marine, dans la botanique pour la compréhension des croissances végétales, dans le sport pour l’optimisation des performances, dans la récupération d’énergie des structures flexibles excitées par un fluide. La thèse permettra à l’étudiant d’acquérir de nombreuses compétences en mathématiques, en simulation numérique, en mécanique des fluides, en mécanique des solides, de se former à la recherche dans le domaine de la mécanique des fluides et des solides, pour in-fine une carrière dans ce domaine, que ce soit dans le monde académique ou de la R&D appliquée dans de nombreux domaines d’intérêt pour les scientifiques et plus généralement pour la société. Un sujet de stage de 6 mois est également proposé en préambule de la thèse (optionnel).

Niveau exigé : Master 2 / Dernière année d’École d’Ingénieur.
Formation exigée : mécanique des milieux continus, résistance des matériaux (théorie des
poutres et des plaques), mécanique des fluides, interaction fluides-structures, simulation
numérique (éléments finis).

Solveur Intégrodifférentiel HPC Parallèle pour la Dynamique des Dislocations

Contexte : La compréhension du comportement des métaux à forts taux de déformation [4] (entre 104 et 108 s-1) représente un défi scientifique et technologique considérable. Cette déformation irréversible (plastique) est due à la présence de défauts linéaires d'alignement cristallin : les dislocations, qui interagissent via le champ élastique à longue portée et par interactions de contact.
Actuellement, le comportement des métaux à forts taux de déformation ne sont accessibles expérimentalement que par chocs laser. D’où la nécessité d’un outil de simulation. Deux grands types d’approches sont possibles : la dynamique moléculaire, et les simulations élastodynamiques. Cette thèse s’inscrit dans le second type d’approche, capitalisant sur nos travaux récents [1, 2] qui ont permis les premières simulations numériques de l’équation de Peierls-Nabarro Dynamique (PND) [5]. Celle-ci décrit des phénomènes intervenant à l’échelle de la dislocation.
PND est une équation intégrodifférentielle non-linéaire qui présente une double difficulté : la non-localité en temps et en espace des opérateurs. Nous l’avons simulée pour la première fois grâce à une stratégie numérique efficace [1], issue de [6]. Mais la nature mono-processeur de son implantation actuelle constitue un verrou, limitant fortement la taille du système et l’étude de son comportement en temps long.

Sujet de thèse : Les objectifs de cette thèse sont de deux natures :
- Numérique. Sur la base algorithmique développée dans [1], implémenter un solveur HPC (Calcul Haute Performance) parallélisé en espace et en temps, avec mémoire distribuée.
- Physique. Grâce au code développé, éclaircir des points cruciaux relatifs à la phénoménologie des dislocations en régime dynamique rapide. L’exploitation des résultats numériques requerra des techniques de traitement de données et de statistiques - potentiellement assistées par de l’IA.
En fonction de l’avancement, il sera possible d’appliquer la méthode numérique développée aux phénomènes de fissuration dynamique [3].

Profil du candidat : Le sujet de thèse proposé est pluridisciplinaire, à la croisée des chemins entre simulation numérique, physique des dislocations et de la propagation de fissures, et traitement statistique. Le candidat devra d’abord posséder une solide formation en calcul scientifique appliqué aux équations aux dérivées partielles et un gout prononcé pour les applications physiques. La maîtrise du C++, avec des compétences en OpenMP et MPI seraient fortement appréciées. Des connaissances en mécanique des milieux continus seraient aussi vu comme un plus.
La thèse se déroulera au Département d'Etudes des Combustibles (Institut IRESNE, CEA/DES, centre de Cadarache), avec des déplacements réguliers en région parisienne pour la collaboration avec le CEA/DAM et le CEA/DRF.

[1] Pellegrini, Josien, Shock-driven motion and self-organization of dislocations in the dynamical Peierls model, soumis.
[2] Josien, Etude mathématique et numérique de quelques modèles multi-échelles issus de la mécanique des matériaux. Thèse. (2018).
[3] Geubelle, Rice. J. of the Mech. and Phys. of Sol., 43(11), 1791-1824. (1995).
[4] Remington et coll., Metall. Mat. Trans. A 35, 2587 (2004).
[5] Pellegrini, Phys. Rev. B, 81, 2, 024101, (2010).
[6] Lubich & Schädle. SIAM J. on Sci. Comp. 24(1), 161-182. (2002).

Dynamique multiéchelle d’une structure élancée avec singularités de frottement : application à un assemblage de combustible

La modélisation dynamique de structures complexes peut nécessiter la prise en compte de phénomènes intervenant à des échelles très différentes. Or, une modélisation fine de ce type de structures entraîne généralement des coûts de calculs prohibitifs. La modélisation multiéchelle se présente alors comme une solution alternative à cette problématique en tenant compte de chaque phénomène à l’échelle la plus adéquate.
Nous nous intéressons ici à des structures élancées soumises à des sollicitations mécaniques qui conduisent à des contacts frottants entre la structure et les éléments de maintien. Le comportement des structures élancées est en général représenté par des modèles de type poutre équivalente, mais la prise en compte précise du contact/frottement local nécessite des modèles 3D massifs.
L’originalité du travail proposé ici est de bâtir une approche multiéchelle et multimodèle efficace entre modèles poutres et massifs qui permette de prendre en compte localement le contact frottant de structures élancées. Nous nous orientons ainsi vers l’utilisation de méthodes multigrilles (ou multiniveaux) locales qui permettent naturellement un couplage multiéchelle non intrusif. La précision de ces méthodes repose alors sur le choix des opérateurs de transfert entre échelles, qui devront être définis avec soin. Il faudra également prendre en compte la non compatibilité des maillages soutenant les modèles sur les différentes échelles pertinentes. Ainsi, le modèle final sera un modèle de poutre enrichi permettant de prendre en compte des phénomènes de contact locaux.
Le modèle développé sera comparé à des résultats expérimentaux obtenus lors de campagnes d’essais déjà réalisées, et à des solutions numériques de référence, de complexité croissante, destinées à valider finement la pertinence de l’approche multiéchelle proposée.
Le potentiel fort des approches multiéchelles visées, appliqué dans ce sujet au domaine du nucléaire, pourra être valorisé par le candidat à d’autres problématiques industrielles telles que celles de l’aéronautique ou encore de l’automobile.
La thèse se déroulera dans le cadre du laboratoire commun MISTRAL entre le CEA et le LMA (laboratoire de mécanique et d’acoustique) de Marseille. Le doctorant réalisera la majeure partie de sa thèse au CEA au sein de l'institut IRESNE (Cadarache) dans les équipes spécialisées autour des méthodes numériques et de la modélisation dynamique de structures complexes. Il se rendra régulièrement à Marseille pour échanger avec les encadrants universitaires.

De l’Angström au micron : un modèle d’évolution microstructurale du combustible nucléaire dont les paramètres sont calculés à l’échelle atomique

La maîtrise du comportement des gaz de fission dans le combustible nucléaire (oxyde d’uranium) est un enjeu industriel important puisque leur relâchement ou leur précipitation limite l'utilisation du combustible à forts taux de combustion. Or ces phénomènes sont fortement influencés par l’évolution microstructurale du matériau aux défauts générés par l’irradiation (création de défauts ponctuels, agrégations de ceux-ci en cavités et bulles de gaz ou en boucles ou lignes de dislocation…). La dynamique d’amas (DA) est un modèle de type cinétique chimique permettant de décrire la nucléation/croissance des amas de défauts, leur contenu en gaz et le relâchement de celui-ci. Le modèle utilisé est paramétré à partir de données de base calculées à diverses échelles (ab initio, potentiels empiriques, Monte Carlo). Ce modèle rend déjà compte d’expériences de recuit d’UO2 implanté en atomes de gaz de fission et a mis en évidence le fort impact des défauts d’irradiation sur le relâchement gazeux. L’objectif de la thèse est d’une part d’améliorer le modèle et ses paramètres d’entrée, notamment le taux de création de défauts d’irradiation, et d’autre part d’étendre son domaine de validation en le confrontant à de nombreuses expériences issues de thèses récemment soutenues au département (mesure de relâchement gazeux par recuit d’échantillons implantés via un accélérateur d’ions, observation de cavités, bulles de gaz et boucles de dislocation par microscopie électronique à transmission, caractérisation du dommage par spectrométrie d’annihilation de positons). Le candidat sera donc amené à faire évoluer certains des sous-modèles constitutifs de la DA, interpréter et simuler l’ensemble des expériences disponibles. En parallèle cela permettra d’affiner la paramétrisation du modèle.
Ce sujet de modélisation présente l’intérêt pour le candidat d’articuler à une dimension “théorique” (amélioration du modèle), ainsi que de physique numérique (simulation en Dynamique Moléculaire de cascades de déplacements) une dimension “expérimentale” (interprétation d’expériences déjà réalisées, voire conception et suivi de nouvelles expériences). Ainsi, l’approche d’un ensemble varié de techniques d’observation et de mesure ouvriront au candidat le monde de la physique expérimentale et complèteront son profil. Le candidat aura également à animer des collaborations dans le but d’analyser les données expérimentales, de développer l’outil de calcul ou de spécifier des calculs atomistiques complémentaires. Il pourra aussi bénéficier d’un environnement de collaboration académique.
Ce travail offre une position centrale et un point de vue synthétique sur la physique du combustible en irradiation. Il vous permettra de contribuer au développement de la physique numérique appliquée à une démarche multiéchelle de modélisation. Vous découvrirez en quoi des outils de simulation basés sur les données microscopiques les plus fondamentales obtenues par le calcul atomistique permettent de traiter et expliquer des situations pratiques.

Pour aller plus loin :
Skorek (2013). Étude par Dynamique d’Amas de l’influence des défauts d’irradiation sur la migration des gaz de fission dans le dioxyde d’uranium. Univ. Aix-Marseille. http://www.theses.fr/2013AIXM4376
Bertolus et al. (2015). Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation. Journal of Nuclear Materials, 462, 475–495.

Génération assistée de noyaux de calculs complexes en mécanique du solide

Les lois de comportement utilisées dans les simulations numériques décrivent les caractéristiques physiques des matériaux simulés. À mesure que notre compréhension de ces matériaux évolue, la complexité de ces lois augmente.L'intégration de ces lois constitue une étape critique pour la performance et la robustesse des calculs scientifiques. De ce fait, cette étape peut conduire à des développements intrusifs et complexes dans le code.

De nombreuses plateformes numériques telles que FEniCS, FireDrake, FreeFEM, Comsol, proposent des techniques de génération de code à la volée (JIT, pour Just In Time) pour gérer différentes physiques. Cette approche JIT réduit considérablement les temps de mise en oeuvre de nouvelles simulations, offrant ainsi une grande versatilité à l'utilisateur. De plus, elle permet une optimisation spécifique aux cas traités et facilite le portage sur diverses architectures (CPU ou GPU). Enfin, cette approche permet de masquer les détails d'implémentation: une évolution de ces derniers est invisible pour l'utilisateur et est absorbée par la couche de génération de code.

Cependant, ces techniques sont généralement limitées aux étapes d'assemblage des systèmes linéaires à résoudre et n'incluent pas l'étape cruciale d'intégration des lois de comportement.

S'inspirant de l'expérience réussie du projet open-source mgis.fenics [1], cette thèse vise à développer une solution de génération de code à la volée dédiée au code de mécanique des structures de nouvelle génération Manta [2] développé par le CEA. L'objectif est de permettre un couplage fort avec les lois de comportement générées par MFront [3], améliorant ainsi la flexibilité, les performances et la robustesse des simulations numériques.

Le doctorant bénéficiera d'un encadrement de la part des développeurs des codes MFront et Manta (CEA), ainsi que des développeurs du code A-Set (collaboration entre Mines-Paris Tech, Onera, et Safran). Cette collaboration au sein d'une équipe multidisciplinaire offrira un environnement stimulant et enrichissant pour le candidat.

De plus, le travail de thèse sera valorisé par la possibilité de participer à des conférences et de publier des articles dans des revues scientifiques à comité de lecture, offrant une visibilité nationale et internationale aux résultats de la thèse.

Le doctorat se déroulera au CEA Cadarache, dans le sud est de la France, au sein du département d'études des combustibles nucléaires de l'institut IRESNE [4]. Le laboratoire d'accueil est le LMPC dont le rôle est de contribuer au développement des composants physiques de la plateforme numérique PLEIADES [5], co-développée par le CEA et EDF.

[1] https://thelfer.github.io/mgis/web/mgis_fenics.html
[2] MANTA : un code HPC généraliste pour la simulation de problèmes complexes en mécanique. https://hal.science/hal-03688160
[3] https://thelfer.github.io/tfel/web/index.html
[4] https://www.cea.fr/energies/iresne/Pages/Accueil.aspx
[5] PLEIADES: A numerical framework dedicated to the multiphysics and multiscale nuclear fuel behavior simulation https://www.sciencedirect.com/science/article/pii/S0306454924002408

Optimisation de l’estimation de la masse de matière nucléaire par méthodes statistiques avancées

Afin de se conformer aux normes de sécurité et de sûreté relatives au stockage des déchets nucléaires et aux traités de non-prolifération, les producteurs de déchets contenant de l'uranium ou du plutonium ont souvent besoin de mesurer la quantité de matières nucléaires dans leurs déchets radioactifs. La caractérisation radiologique des matières nucléaires par mesure neutronique passive et active est l'une des activités de recherche historiques du Laboratoire de Mesures Nucléaires (LMN) du CEA/IRESNE de Cadarache.

Les compteurs proportionnels remplis de 3He ou recouverts de bore sont les détecteurs de référence utilisés pour ces techniques qui constituent des outils de référence pour la mesure du plutonium ou de l’uranium. En mesure passive, la coïncidence neutronique permet de discriminer les événements de fission spontanée associés notamment au 240Pu des neutrons issus des réactions (a, n). En mesure active, la technique d’interrogation neutronique active (DDT) fournit des informations sur la quantité d'isotopes fissiles à l'intérieur d'un colis de déchets.

Afin de réduire la sensibilité des techniques de mesures neutroniques aux effets d'atténuation de matrice et de localisation du contaminant, un des objectifs de la thèse est d’étudier le couplage de différents types de mesures, tels que la mesure voie par voie, la tomographie d’émission ou la radiographie RX haute énergie, dans un cadre de méthodes statistiques avancées. La thèse vise également à évaluer l’apport des méthodes statistiques avancées, tels que les algorithmes de régression, les approches bayésiennes (parmi lesquelles le processus gaussien), et les réseaux de neurones, pour réduire l’incertitude associée à la masse du plutonium.

Une attention particulière sera accordée au traitement des hétérogénéités de la matrice et de la distribution du contaminant radioactif. L'influence de ces hétérogénéités peut être particulièrement difficile à quantifier, nécessitant non seulement l'utilisation de méthodes statistiques avancées, mais aussi une étude expérimentale approfondie à l’aide du poste de mesure neutronique SYMETRIC du CEA/IRESNE.

Les travaux de thèse seront réalisés au Laboratoire de Mesures Nucléaires du CEA/IRESNE de Cadarache, qui est un laboratoire métier, expert dans les méthodes non-destructives de caractérisation radiologique, élémentaire et physique d’objets qu’ils soient radioactifs ou non. Il est doté de plateformes technologiques de premier plan, implantés dans l’installation TOTEM (mesures neutroniques et gamma) et l’INB Chicade (plateformes SYMETRIC en mesure neutronique et CINPHONIE pour l’imagerie RX de haute énergie). Enfin, le doctorant évoluera dans un environnement collaboratif où les différentes équipes sont en forte interaction les unes avec les autres.

Modélisation simplifiée de la calcination en tube tournant

Dans le cadre du retraitement des combustibles usés de type uranium oxyde, les déchets liquides ultimes de haute activité sont conditionnées dans des verres par un procédé en deux étapes, calcination puis vitrification. La calcination transforme progressivement le déchet liquide en un résidu sec, qui est mélangé à un verre préformé dans un four de fusion. Le calcinateur est constitué d’un tube tournant chauffé par un four à résistances. Les solutions calcinées sont constituées d’acide nitrique et de composés sous leur forme nitrate ou d’insolubles sous forme d’alliages métalliques. Dans l’objectif d’améliorer la maîtrise du pilotage du calcinateur, il est proposé de le modéliser.
La modélisation va consister à créer puis coupler trois modèles :
• Un modèle thermodynamique permettant de représenter les transformations subies par la matière. Cette partie fera très certainement appel à des mesures ATD et ATG, couplées très certainement à une démarche de type plan d’expériences (1ère année).
• Un modèle d’écoulement de la matière. Il existe déjà dans la littérature des principes de représentation très simplifié d’écoulement dans un calcinateur en tube tournant, mais il faudra faire preuve d’innovation notamment en définissant des tests pour caractériser l’écoulement de la matière au cours du processus de calcination (2ème année).
• Un modèle thermique qui prendra en compte les échanges entre le four et le tube du calcinateur mais également les échanges entre la matière et le tube. Des caractérisations de coefficients d’échanges devront être réalisées(1ère année).
Le couplage de ces trois modèles (3ème année) donnera naissance à une première modélisation simplifiée de la calcination. Ce modèle sera utilisé pour aider au pilotage de l’étape de calcination mais également pour former les opérateurs au pilotage de cet appareil.
Vous évoluerez au sein du LDPV, une équipe pluridisciplinaire (procédé, chimie, mécanique des fluides, modélisation, mécanique, induction) composée de 16 ingénieurs et techniciens. Equipe de 30 ans d’expérience en procédé de vitrification reconnue au niveau national et international

Développement d'électrodes négatives en couches minces pour accumulateurs tout-solides "Li-free"

L'objectif de cette thèse est de développer des électrodes négatives dites ‘Li-free’ pour de nouvelles générations de batteries au lithium tout solides à forte densité d’énergie. La fonction de ce type d’électrode est d’apporter un gain significatif en densité d’énergie au niveau de l’accumulateur, de faciliter sa fabrication en s’affranchissant de la manipulation du lithium métal, et avant tout, à permettre la formation d’un film homogène de lithium, exempt de dendrites lors la charge de l’accumulateur.
Ces électrodes seront basées sur la fonctionnalisation d’un collecteur métallique par des matériaux en couches minces, comportant au moins un matériau lithiophile (typiquement un composé alliable avec le lithium) et un conducteur ionique inorganique. La préparation de ces électrodes fera appel à des procédés de dépôt physique sous vide tels que la pulvérisation cathodique ou l’évaporation thermique. Il s’agira donc d’étudier l’influence de la composition et de la structuration de la couche lithiophile sur le mécanisme de nucléation et de croissance du film de lithium, et sur l’évolution de l’électrode au cours des cycles de charge/décharge. Le rôle des interactions chimiques/mécaniques avec la couche conductrice ionique sera également scruté.
Cette thèse qui s’inscrit dans un projet collaboratif national CEA/CNRS s’effectuera sur le site du CEA Tech à Pessac qui dispose d’un parc complet d’équipements de dépôt sous vide et de caractérisation des couches minces, en étroite collaboration avec l’ICMCB de Bordeaux. Elle bénéficiera des nombreux moyens de caractérisation (microscopie optique confocale, MEB/cryo FIB, ToF-SIMS, RMN, µ-DRX, AFM,...) disponibles au sein des différents laboratoires partenaires du projet.

Top