Etude de la catalyse de l’acide nitrique sur les aciers inoxydables
Le vieillissement des matériaux (principalement des aciers inoxydables) de l’usine de retraitement des combustibles nucléaires usés fait l’objet d’une importante activité de R & D au CEA. Le contrôle de ce vieillissement sera réalisé par une meilleure compréhension des mécanismes de corrosion des aciers inoxydables en acide nitrique (l'agent oxydant utilisé dans les étapes de retraitement).
L'objectif de la thèse est de développer un modèle de corrosion d’un acier inoxydable en fonction de la température et de la concentration en HNO3 via la quantification des produits de corrosion. Cette thèse représente un réel challenge technologique car actuellement peu d’études existent sur des mesures électrochimiques in situ dans l’acide nitrique chaud et concentré. Le doctorant réalisera également un travail expérimental important en couplant des mesures électrochimiques, des analyses chimiques (spectrométrie UV-visible-IR ...) et des analyses de surfaces (SEM, XPS,…). Sur la base de ces résultats expérimentaux, un modèle sera développé, qui sera incorporé à l'avenir dans un modèle plus global du vieillissement des équipements industriels de l'usine.
Le laboratoire est spécialisé dans l'étude de la corrosion dans des conditions extrêmes. Il est composé d'une équipe scientifique très dynamique et motivée qui a l'habitude de recevoir des étudiants.
Cinétique du front de fusion d’un Matériau à Changement de Phase utilisé pour évacuer la puissance résiduelle d’un réacteur nucléaire innovant
Dans le cadre du développement de réacteurs nucléaires innovants de à neutrons rapides refroidis au sodium (RNR-Na), cette thèse vise à explorer l’utilisation d’un matériau à changement de phase (MCP) pour évacuer la puissance résiduelle. Le MCP étudié dans ce projet est le Zamak, un alliage métallique présentant des caractéristiques intéressantes pour ce type d’applications thermiques.
Certains concepts de RNR-Na intègrent des systèmes de sûreté passifs conçus pour assurer l’évacuation de cette puissance résiduelle, qui correspond à la chaleur dégagée par les fissions retardées et les décroissances radioactives des isotopes du combustible après l’arrêt du réacteur. L'utilisation de matériaux à changement de phase est une option intéressante, permettant d’absorber et de stocker la chaleur grâce à la fusion du MCP, puis de la restituer progressivement.
Le cœur de cette thèse porte sur la modélisation CFD du processus de fusion du Zamak et de la remontée d'échelle vers un outil de calcul simplifié. Le défi principal réside dans la prédiction du comportement du front de fusion, de sa stabilité et de son impact sur la cinétique d'évacuation de la puissance résiduelle. Ce front de fusion est influencé entre autre par l'angle de mouillage, la physico-chimie de l'interface MCP-paroi ou MCP-gaz environnant, qui seront à étudier durant la thèse. Les travaux de recherche porteront donc sur le développement d’un modèle CFD qui intègre ces éléments, avec une approche par enthalpie poreuse, permettant ainsi des simulations prédictives du comportement du MCP dans le système d’évacuation de la puissance résiduelle. Une analyse de remontée d'échelle sera ensuite effectuée.
Le doctorant sera positionné dans une équipe de recherche sur les réacteurs innovants à l’institut IRESNE sur le site du CEA de Cadarache. Les débouchés après la thèse incluent la recherche universitaire, la R&D et l’industrie nucléaire, également dans des secteurs mettant en œuvre des MCP.
Investigations en cellule tri-axiale et prise en compte de l’influence du comportement de la microstructure des agglomérats d’(U-Pu)O2 sur la simulation de la mise en forme de combustibles
Le sujet de recherche concerne la prise en compte de l’influence du comportement de la microstructure des agglomérats d’(U-Pu)O2 sur la simulation de la mise en forme de combustibles à travers des investigations en cellule triaxiale. Il s’articule autour des études expérimentales et numériques multi-échelle afin de proposer des simulations de la mise en forme des combustibles d’actinides avec prise en compte de la rupture et du réarrangement des agglomérats dans les lois de comportement homogénéisées sur VER. Pour ce faire, des investigations en cellule triaxiales sont envisagées d’une part sur VER en tomographie X-CT sur poudres modèles simulantes inactives et d’autre part sur échantillons de tailles industrielles sur poudres réelles actives. Des essais de rupture en tomographie X seront également envisagés dans le cas des matériaux inactifs et hors tomographies sur matériaux actifs, pour confronter les résultats expérimentaux et numériques dans le cas des endommagements des combustibles pré-frittés. Une confrontation sera également prévue afin de prendre en compte l’impact de l’approche envisagée sur les paramètres des modèles actuellement utilisés pour les simulations macroscopiques de la mise en forme des combustibles à l’échelle industrielle.
Révolutionner l'intervention en milieux complexes : L'IA et les Jumeaux numériques en synergie pour des solutions innovantes et efficaces.
Contexte scientifique
L’exploitation d’équipements complexes, notamment dans le secteur nucléaire, repose sur l’accès rapide et sécurisé à des données hétérogènes. Les avancées en IA générative, combinées aux Jumeaux Numériques (JN), offrent des solutions innovantes pour améliorer les interactions humain-système. Cependant, l’intégration de ces technologies dans des environnements critiques nécessite des approches adaptées pour garantir intuitivité, sécurité et efficacité.
Travail proposé
Cette thèse propose de développer une architecture d’IA générative enrichie par des données métiers et accessible via la réalité mixte, permettant à un opérateur de boite à gants de poser des questions en langage naturel. Les travaux incluent :
1. Une revue de l’état de l’art sur la génération augmentée (RAG), les technologies ASR/TTS et les JN.
2. Le développement et l’intégration d’un chatbot pour l’exploitation nucléaire.
3. L’évaluation des interactions humain-IA et la définition de métriques d’efficacité et d’adoption.
Résultats attendus
Le projet vise à améliorer la sécurité et la productivité grâce à une interaction optimisée et à proposer des guidelines pour l’adoption de ces systèmes dans des environnements critiques.
Etude de la diffusion de petits amas de xénon au sein du combustible nucléaire métallique UMo
Ce sujet de thèse est centré sur l’application de méthodes de calcul à l’échelle des atomes afin d’étudier la diffusion et la stabilité intra-granulaire d’amas de Xe au sein du combustible métallique UMo.
Les alliages d’uranium-molybdène UMo présentent d’excellentes propriétés thermiques et une bonne densité en uranium. C’est notamment pour ces propriétés que l’UMo monolithique est considéré comme l’un des potentiels combustibles candidats pour les réacteurs de recherche. Il est donc crucial pour le CEA de développer de nouveaux modèles de calcul permettant d’analyser l’évolution des propriétés thermomécaniques de l’UMo en conditions d’irradiation.
Au cours de cette thèse, votre travail consistera dans un premier temps à valider ou recalibrer si nécessaire les modèles de calcul à l’échelle atomique existants pour l’UMo dans la littérature. Vous devrez ensuite de les appliquer à la simulation de la stabilité et de la diffusion de petits amas de xénon au sein de cristaux d’UMo. Ces calculs seront effectués à l’aide de méthodes de dynamique moléculaire accélérée novatrices, et seront systématiquement comparés aux résultats obtenus pour le combustible nucléaire de référence UO2. Après avoir analysé vos résultats par comparaison aux mesures expérimentales de collaborateurs du département, vous serez en charge de transférer les données produites à d’autres chercheurs du département afin d’alimenter les codes de simulation des combustibles nucléaires à plus grande échelle. Vos résultats seront publiés au sein de publications scientifiques, et vous présenterez vos résultats dans le cadre de conférences scientifiques.
L’ensemble de ces travaux vous permettrons de compléter votre formation en acquérant des compétences applicables à de nombreux domaines de la science des matériaux: calculs ab initio, ajustement de potentiels interatomiques par techniques de « machine learning », dynamique moléculaire classique et accélérée, utilisation des super-calculateurs du CEA, ainsi que de nombreux éléments de physique statistique et de physique de la matière condensée, méthodes dont les membres de l’équipe encadrante sont des spécialistes.
Vous serez accueilli au sein du Laboratoire de Modélisation du Comportement des Combustibles (Institut IRESNE, CEA Cadarache). Il s’agit d’un groupe de recherche dynamique, au sein duquel vous serez amené à collaborer avec les autres doctorants présents au laboratoire. L’environnement de travail sera de plus riche en collaboration nationales et internationales (expérimentateurs du département, Institut ISAS (CEA Saclay), Laboratoire CINAM à Marseille, collaborations avec les laboratoires nationaux américains), qui vous permettront de vous insérer au sein de la communauté de la recherche en matériaux pour les sciences du nucléaire.
Optimisation par Intelligence Artificielle de la Caractérisation In-Situ des Radionucléides Bêta Purs en Milieux Complexes
Avant, pendant, après… la caractérisation de l’état radiologique est essentielle à toutes les étapes du scénario de démantèlement d’une installation nucléaire. Peut-on intervenir directement sur place ou faut-il prévoir de la téléopération ? La contamination d’une zone a-t-elle été complètement éliminée ? Dans quelle catégorie classer tel ou tel déchet nucléaire afin d’optimiser sa gestion future ?
Les mesures nucléaires non destructives in-situ ont pour objectif d’évaluer en temps réel l’état radiologique des procédés et équipements d’une installation, tout en répondant à des critères d’efficacité, de sûreté, de flexibilité et de fiabilité et en réduisent les coûts grâce à des analyses rapides, précises et non invasives. Si les techniques de caractérisation des émetteurs gamma sont bien maîtrisées, celles des émetteurs bêta purs restent un défi de taille en raison du faible parcours des électrons dans la matière et du bruit gamma ambiant qui rend la détection in-situ particulièrement complexe.
L’intégration d’outils d’intelligence artificielle (IA), tels que le machine learning ou le deep learning, dans ce domaine ouvre de nouvelles perspectives. Ces technologies permettent d’automatiser l’analyse de grandes quantités de données tout en extrayant des informations complexes difficiles à interpréter manuellement, notamment pour déconvoluer des spectres continus de rayonnements bêta. Les premiers résultats obtenus dans le cadre de la thèse de L. Fleres, ont montré que l’IA peut prédire et quantifier efficacement les radionucléides émetteurs bêta présents dans un mélange. Bien que prometteuse, cette approche testée en conditions de laboratoire, doit encore être qualifiée dans des conditions réelles de terrain.
La thèse proposée vise à poursuivre et perfectionner ces développements. Elle consistera à intégrer de nouveaux algorithmes, d’explorer diverses architectures de réseaux neuronaux, et d’enrichir les bases de données d’apprentissage afin d'améliorer les performances des systèmes actuels pour la caractérisation in-situ des émetteurs bêta. Cela inclura des scénarios où le rapport signal/bruit gamma est défavorable, ou encore la détection de faibles niveaux d’activité en présence de radioactivité naturelle. D'autres axes de recherche incluront la détection des radionucléides à faible énergie et l'adaptation des outils de déconvolution à des détecteurs de grande surface.
La méthodologie de caractérisation développée à l’issue du projet présentera un fort potentiel de valorisation industrielle en particulier dans le domaine de l’assainissement et du démantèlement. Le doctorant intégrera une équipe disposant d’une riche expérience dans la mise en œuvre de techniques et méthodes de caractérisation radiologique non destructive in-situ et aura l’opportunité d’évaluer les solutions proposées sur des chantiers de démantèlement parmi les plus importants au monde.
Profil recherché : Le profil recherché est un(e) candidat(e) issu(e) d’une école d’ingénieurs ou d’un MASTER M2 avec de bonnes connaissances en mesure nucléaire en particulier des phénomènes physiques liés aux interactions des rayonnements ionisants avec la matière. Des compétences vis-à-vis des méthodes statistiques de traitement de données et en programmation informatique (Pyhton, C++) seraint également appréciées.
Décontamination assistée par ultrasons de solides pollués en mercure
Le mercure, considéré comme l’un des polluants les plus dangereux, a été largement utilisé dans l’industrie, en particulier dans des électrolyseurs (procédé chlor-alkali). De nombreuses installations ont ainsi été contaminées. Les méthodes de stabilisation ou de décontamination existantes sont énergivores ou limitées en termes de spéciation. Nous nous intéressons ici à l’apport d’une irradiation ultrasonore dans un procédé de lixiviation du mercure présent dans des solides poreux (comme des mortiers). La caractérisation des solides et liquides avant/après décontamination sera effectuée par microscopie électronique à balayage (MEB) couplée à spectrométrie EDX, diffraction des rayons X (DRX) et spectrométrie de fluorescence des rayons X.
La thèse se déroulera sur le centre de Marcoule situé à 30 minutes d’Avignon, dans les Laboratoire des Procédés Supercritiques et de Décontamination (DMRC/STDC/LPSD) et Laboratoire de Sonochimie dans les Fluides Complexes (ICSM//LSFC). Le site, desservi par des bus, accueille de nombreux doctorants et post-doctorants. Le candidat recherché est ingénieur/titulaire d’un master 2 avec un profil génie chimique et des compétences souhaitées en chimie analytique et chimie inorganique. Le candidat acquerra une première expérience dans le domaine de la décontamination, qui constitue une des problématiques majeures liées à l’économie circulaire des énergies. Il pourra, selon l’orientation visée de la thèse, poursuivre sa carrière dans le milieu académique ou dans l’industrie.
Simulation du comportement des poudres cohésives : lien entre l’échelle atomique et l’échelle granulaire
Le combustible nucléaire est fabriqué par un procédé de métallurgie des poudres mettant en œuvre différentes étapes de préparation du milieu granulaire (broyage, mélange), de pressage et de frittage. Les poudres mises en œuvre lors de ces étapes présente une cohésion importante entre les grains rendant son comportement à l’écoulement complexe. La prédiction du comportement de la poudre est un enjeu industriel crucial pour pouvoir s’adapter rapidement à un changement de matière première, optimiser la qualité du produit et améliorer les cadences de production.
Cette thèse vise à établir le lien entre les propriétés des poudres et leur aptitude à l'écoulement et au pressage. La cohésion entre les grains de poudre est un facteur clé influençant l'écoulement et la densification des matériaux granulaires. Elle est déterminée par plusieurs forces interparticulaires, telles que les forces de van der Waals, les interactions capillaires, et les forces électrostatiques. Comprendre ces interactions à une échelle atomique est essentiel pour prédire et modéliser le comportement des poudres. Cette thèse cherche à adresser deux questions : Comment les propriétés de surface des grains à l'échelle atomique influencent-elles la force de cohésion à l'échelle des grains composant la poudre ? Et, comment passer de l'échelle atomique à l'échelle du grain pour simuler de manière réaliste les poudres ?
Les approches de simulation multi-échelles permettent de relier les phénomènes microscopiques aux comportements macroscopiques des matériaux granulaires. Les simulations DEM (Discrete Element Method) actuelles intègrent rarement les interactions élémentaires telles que les forces de van der Waals, électrostatiques et capillaires dans les lois de contact. Des travaux de thèse récents (1) (2) ont exploré l'effet de la cohésion avec une approche simplifiée où la cohésion est prise en compte comme une force d’attraction ou une énergie de cohésion. Les méthodes de simulation de type Dynamique Moléculaire (MD) ou Coarse-graining permettent de simuler le comportement du matériau à une échelle inférieure à partir de ces propriétés structurelles et chimiques locales. Une meilleure compréhension de la cohésion à petite échelle permettra d'améliorer la prédictivité des simulations DEM et de mieux comprendre le lien entre les propriétés des poudres et leur comportement global.
L’objectif principal de cette thèse est de mieux comprendre les liens entre les interactions à l'échelle atomique et la cohésion à l'échelle des grains et d’en évaluer les conséquences pour les simulations de pressage et de l’écoulement des poudres.
L'un des principaux défis de ce projet réside dans la création de lois de contact DEM qui intègrent les interactions complexes à l'échelle atomique. Cela nécessite une collaboration étroite entre les experts en simulation atomistiques et ceux en modélisation DEM. De plus, il est crucial de valider ces modèles par des comparaisons avec des expériences et des observations afin de garantir leur précision et leur applicabilité aux procédés industriels.
Le doctorant sera accueilli au sein de l'institut IRESNE (CEA-Cadarache) dans le Laboratoire des Méthodes numériques et Composants physiques de la plateforme PLEIADES du Département d’Etude des Combustibles et collaborera avec le Laboratoire de Modélisation du Comportement des Combustibles. Il bénéficiera d’un environnement faisant appel à des outils d’investigation de pointe sur le plan de la modélisation-simulation et d’un environnement collaboratif avec Le Laboratoire de Mécanique et Génie Civil de l’Université de Montpellier.
Références
1. Sonzogni, Max. Modélisation du calandrage des électrodes Li-ion en tant que matériau granulaire cohésif : des propriétés des grains aux performances de l'électrode. s.l. : Thèse, 2023.
2. Tran, Trieu-Duy. Cohesive strength and bonding structure of agglomerates composed. 2023.
Simulations mésoscopiques et développement de modèles simplifiés pour le comportement mécanique des bétons irradiés
Dans les centrales nucléaires, le puits de cuve en béton sert de support pour la cuve du réacteur et d’écran de protection contre les radiations. A long terme, l’exposition à des radiations neutroniques peut causer une expansion des granulats du béton par amorphisation, et provoquer une microfissuration et une dégradation de ses propriétés mécaniques. Cette problématique est importante dans les études visant à prolonger la durée de vie des centrales. À l’échelle mésoscopique, ces phénomènes peuvent être modélisés en dissociant le comportement des granulats, de la matrice cimentaire, et des interfaces entre ces phases. Cependant, il est difficile de décrire l’initiation et la propagation des microfissures dans de tels systèmes multi-fissurés hétérogènes complexes. L'objectif de cette thèse, menée dans le cadre d’un projet ANR franco-tchèque, est de développer un outil de simulation numérique performant pour analyser les effets de l’irradiation neutronique sur le béton à l’échelle mésoscopique. Une approche couplée thermo-hydro-mécanique dans laquelle le comportement de la matrice prendra en compte retrait, fluage et microfissuration sera utilisée. Les simulations seront validées à partir de données expérimentales obtenues sur des échantillons testés, et l’outil numérique permettra par la suite d’estimer l’impact de différents facteurs sur le comportement et les performances du béton soumis à une irradiation neutronique.
Ce projet de recherche s'adresse à un doctorant souhaitant développer ses compétences en science des matériaux, avec une forte composante en modélisation et simulations numériques multiphysiques et multi-échelles.
Etude du comportement en corrosion dans NaCl-MgCl2-CeCl3 d’un alliage base nickel en présence de produits de fission (Te,S) pour les réacteurs à sels fondus
L’accès à une énergie propre et peu coûteuse semble plus que jamais primordial dans le contexte actuel d’urgence climatique. Plusieurs pistes sont envisagées depuis plusieurs années déjà mais de nombreux verrous technologiques restent à lever pour les concrétiser, tant elles représentent des ruptures technologiques. Que ce soit pour le stockage d’énergie ou les réacteurs nucléaires de 4ème génération, le milieu sel fondu utilisé comme caloporteur et/ou comme combustible est fortement corrosif rendant le choix des matériaux de structure très complexe.
L’objectif du sujet de thèse proposé au sein du Service de Corrosion et du Comportement des Matériaux (S2CM) consiste en l’étude intégrale du comportement d’alliages base nickel prometteurs dans le ternaire NaCl-MgCl2-CeCl3, représentatif du sel utilisé dans le concept français de réacteurs à sels fondus, à 600°C. Par intégrale, il est ici entendu depuis la préparation d’éprouvette à la caractérisation multi-échelle et multi-techniques des produits de corrosion. Cette thématique revêt un haut caractère expérimental et de compréhension des mécanismes de corrosion. L’influence des produits de fission, tels que le tellure ou le soufre sur les mécanismes de corrosion sera particulièrement étudiée.