Modélisation du ‘’Joint Oxyde-Gaine’’ et de la corrosion interne de gaine dans GERMINAL à partir des résultats issus de différentes techniques de caractérisation expérimentale
Ce sujet de thèse s’inscrit dans le cadre des études sur le comportement physico-chimique en conditions d’irradiation du combustible « oxyde d’uranium et de plutonium » actuellement envisagé pour les futurs réacteurs nucléaires de 4ème génération. Du fait de son régime thermique particulièrement élevé au cours de son séjour en réacteur, le combustible des réacteurs à neutrons rapides est le lieu de divers phénomènes de transformations physiques et chimiques. Ces phénomènes peuvent affecter significativement le comportement de l’élément combustible dans son ensemble, mais on assiste en particulier à deux phénomènes spécifiques à ce type de combustible ayant lieu à moyen et fort taux de combustion :
- La formation par évaporation-condensation d’une couche de composés de produits de fission localisée entre la surface externe de la pastille et la face interne de la gaine à taux de combustion moyen, dénommée JOG pour Joint Oxyde Gaine ;
- La formation d’une couche composée de produits de fission et des éléments constitutifs de l’acier de gainage sur la face interne de la gaine à fort taux de combustion issue de la ROG (Réaction Oxyde-Gaine).
L’apparition successive ou conjointe de ces deux phénomènes est un facteur limitant pour les taux de combustion. Aussi, il est important de pouvoir estimer de manière assez précise la composition chimique de la pastille combustible et du jeu pastille-gaine au cours de l’irradiation. De précédents travaux expérimentaux été confortées par des calculs thermodynamiques qui avait conduit à supposer que le JOG était principalement constitué de Cs2MoO4, avec également la présence d’autres éléments tels que le tellure ou le baryum. Malgré tout, il n’y avait pas eu de mise en évidence directe de la présence de ce composé. Or récemment, des caractérisations expérimentales réalisées dans le cadre d’une thèse en cours ont permis d’obtenir des mesures quantitatives des éléments chimiques et de confirmer que le JOG était principalement constitué de Cs, Mo et d’O mais aussi d’I et Ba répartis dans plusieurs phases. D’autres éléments ont été détectés et mesurés dans des zones localisées, à savoir du Te, du Zr ainsi que de l’U et du Pu. En ce qui concerne la corrosion, des phases à base de Fe, Te et Pd ont été observées, ainsi que la présence conjointe de Cr et d’O.
En parallèle, un travail de modélisation de la redistribution axiale du césium a été initié en vue d’une amélioration de la description actuellement adoptée dans GERMINAL, l’outil de calcul scientifique (OCS) dédié au calcul du comportement thermomécanique et physico-chimique du combustible des réacteurs de 4ème génération irradié en conditions nominales et/ou incidentelles. En effet, l’inventaire en éléments chimiques à une cote axiale donnée intervient au premier ordre sur l’épaisseur de JOG et l’épaisseur de ROG calculée.
L’objectif du sujet de thèse consiste à améliorer la description et la modélisation de la formation du JOG et de la ROG dans l’outil de calcul scientifique (OCS) GERMINAL.
Pour ce faire, les recherches seront développées sur trois axes :
- Approfondissement de la méthodologie de migration radiale adoptée dans le code GERMINAL via la comparaison avec les résultats expérimentaux récemment obtenus. Celle-ci repose sur un couplage avec un module de thermochimie où plusieurs hypothèses de relâchement des produits de fission volatils créés dans la pastille vers le jeu pastille-gaine peuvent être considérées.
- Poursuite du développement du modèle de redistribution axiale du césium et par extension des produits de fission volatils afin d’aboutir à une première implémentation dans le code GERMINAL pour test et validation préliminaire par comparaison avec les résultats expérimentaux,
- Enfin, des calculs thermodynamiques visant à déterminer la nature et la quantité locale des phases chimiques formées dans la pastille combustible ainsi que des phases constitutives du JOG et de la ROG seront effectués à partir des inventaires axiaux évalués par le code GERMINAL.
Ainsi, il sera possible de pouvoir évaluer de manière plus précise la composition chimique du combustible irradié, du JOG et des produits de la ROG en fonction du taux de combustion via l’OCS GERMINAL en fonction du temps aux différentes localisations radiales et axiales.
Le doctorant sera intégré dans le service d’étude et de simulation du comportement du combustible qui dispose ou développe des outils de simulation variés (Département d'études des combustibles, Institut IRESNE (CEA Cadarache). Il interagira également avec le laboratoire de caractérisation et d’étude des propriétés des combustibles (SA3E/LCPC) d’où sont issues l’essentiel des données expérimentales actuellement disponibles sur le JOG et la ROG. Par ailleurs, des collaborations de type académiques ou internationales sont envisageables, notamment dans le cadre de l’OCDE/AEN avec le développement de la base de données thermodynamiques TAFID. Elles permettront au doctorant de valoriser les compétences qu’il aura acquises dans le domaine de la caractérisation des matériaux nucléaires ainsi que dans celui du calcul thermodynamique et de la simulation du comportement physico-chimique du combustible nucléaire irradié.
Conception et développement d’algorithmes asynchrones pour la résolution de l’équation du transport des neutrons sur des architectures massivement parallèles et hétérogènes
Cette proposition de thèse s’inscrit dans le cadre de la résolution numérique d’équations aux dérivées partielles par le biais d’une discrétisation des variables. Elle s’intéresse, dans un formalisme d’éléments finis, à travailler sur la conception d’algorithmes au travers de modèles de programmation parallèle et asynchrone pour la résolution de ces équations.
Le cadre industriel applicatif est la résolution de l’équation de Boltzmann appliquée au transport des neutrons dans le cœur d’un réacteur nucléaire. Dans ce contexte, beaucoup de codes modernes de simulations’appuient sur une discrétisation par éléments finis (plus précisément, un schéma Galerkin discontinu décentré amont) pour des maillages cartésiens ou hexagonaux du domaine spatial. L’intérêt de ce travail de thèse prolonge des travaux précédents pour explorer leur extension dans un cadre d’architecture distribuée qui n’ont pas été abordé jusque-là dans notre contexte. Il s’agira de coupler des stratégies algorithmiques et numériques pour la résolution du problème à un modèle de programmation qui expose du parallélisme asynchrone.
Ce sujet s’inscrit dans le cadre de la simulation numérique des réacteurs nucléaires. Ces simulations multiphysiques coûteuses requièrent le calcul du transport des neutrons en cinétique qui peuvent être associées à des transitoires de puissance violents. La stratégie de recherche adopté pour cette thèse permettra de gagner en coût de calcul, et alliée à un modèle massivement parallèle, peut définir les contours d’un solveur neutronique efficace pour ces problèmes multiphysiques.
Un travail réussi dans le cadre de cette thèse permettra à l’étudiant de prétendre à un poste de recherche en simulation et analyse numérique de problèmes physiques complexes, par-delà la seule physique des réacteurs nucléaires.
Prédire les propriétés thermodynamiques des défauts dans des alliages métalliques multi-composants à partir de l'échelle atomique par apprentissage statistique
Les propriétés et le comportement des matériaux dans des conditions extrêmes sont essentiels pour les systèmes énergétiques tels que les réacteurs de fission et de fusion. Cependant, prédire avec précision les propriétés des matériaux à haute température reste un défi. Les mesures directes de ces propriétés sont limitées par les instruments expérimentaux, et les simulations à l'échelle atomique basées sur des champs de force empiriques sont souvent peu fiables en raison d'un manque de précision. Ce problème peut être résolu à l'aide de techniques d'apprentissage statistique, qui ont récemment vu leur utilisation exploser en science des matériaux. Les champs de force construits par apprentissage statistique atteignent le degré de précision des calculs {it ab initio} ; cependant, leur mise en œuvre dans les méthodes d'échantillonnage est limitée par des coûts de calcul élevés, généralement supérieurs de plusieurs ordres de grandeur à ceux des champs de force traditionnels. Pour surmonter cette limitation, deux objectifs seront poursuivis dans cette thèse : (i) améliorer les champs de force par apprentissage statistique actif en trouvant un meilleur compromis précision-efficacité et (ii) créer des méthodes accélérées d'échantillonnage de l'énergie libre et des chemins cinétiques afin de faciliter l'utilisation de champs de force d'apprentissage statistique coûteux en termes de calcul. Pour le premier objectif, nous améliorons la construction des champs de force d'apprentissage statistique en nous concentrant sur trois facteurs clés : la base de données, le descripteur de l'environnement atomique local et le modèle de régression. Pour le deuxième objectif, nous mettrons en œuvre un schéma d'échantillonnage bayésien rapide et robuste pour estimer l'énergie libre anharmonique, qui est cruciale pour comprendre les effets de la température sur les solides cristallins, à l'aide d'une méthode de force de biais adaptative qui améliore considérablement la vitesse de convergence et la précision globale. Nous appliquerons les méthodes développées au calcul de l'énergie libre et de ses dérivées, des grandeurs physiques qui donnent accès aux propriétés thermo-élastiques des alliages et aux propriétés thermodynamiques des défauts ponctuels. Pour cela, nous utiliserons des extension algorithmiques qui permettent d'échantillonner un état métastable spécifique et aussi les chemins de transition vers d'autres bassins d'énergie et donc d'estimer les énergies libres de formation et de migration de défauts lacunaires. Les grandeurs thermodynamiques calculées seront ensuite utilisées comme données d'entrée de méthodes de Monte Carlo cinétique, qui permettra de mesurer les coefficients de diffusion dans les alliages complexes en fonction de la température. Un but sera d'essayer de relier les propriétés de transport atomique à la complexité de l'alliage. Notre approche ayant une rapidité considérablement supérieure à celle des méthodes standard, nous pourrons envisager de l'appliquer à des alliages complexes comprenant les éléments W, Ti, V, Mo et Ta à des températures et des compositions qui n'ont pas été étudiées expérimentalement.
Nucléation, Croissance et Propriétés Structurales Multi-Echelle de Nanoparticules Colloïdales d’Oxydes d’Actinides (Pu, U, Th)
Les oxydes nanocristallins possèdent des propriétés physico-chimiques uniques, modulées par leur taille et leur structure locale, les rendant prometteurs pour diverses applications technologiques. Cependant, les nanoparticules d’oxydes d’actinides restent encore peu étudiées, en raison de leur radioactivité et toxicité. Néanmoins, les études qui leur sont consacrées sont grandissantes, motivées par des raisons environnementales ou industrielles, notamment pour leur implication dans les cycles du combustible nucléaire actuels et futurs. Cette thèse cible le plutonium, un élément clé des réacteurs nucléaires. Son comportement en solution est complexe, notamment en raison des réactions d’hydrolyse qui conduisent à la formation de nanoparticules colloïdales de PuO2 extrêmement stables. Bien que ces espèces soient aujourd’hui mieux décrites, les mécanismes conduisant à leur formation restent encore peu explorés.
L'objectif ambitieux de cette thèse est de percer les mécanismes fondamentaux en lien avec la formation de ces nanoparticules en adoptant une approche systématique combinant une large gamme de paramètres expérimentaux. Ceux-ci incluent le milieu de synthèse, la température, la concentration des réactifs, la durée de réaction ou encore l'apport de la sonochimie. L’accent sera mis sur l’étude des étapes de nucléation et de croissance de ces nanoparticules, ainsi que sur leurs propriétés structurales en fonction des conditions physico-chimiques qui influencent leur formation. Des études seront conjointement réalisées à l’ICSM avec les éléments Th, U et Zr en tant qu’analogues et sur l’installation Atalante pour le Pu. Au-delà des techniques usuelles de laboratoire nécessaires à la caractérisation de ces systèmes, des expériences complémentaires seront réalisées sur des lignes synchrotron (SOLEIL et ESRF) afin de caractériser de manière approfondie les propriétés structurales et réactionnelles de ces espèces et de leur précurseur.
Les super-réseaux pour la caractérisation de la diffusion sous irradiation à l’échelle atomique
Les alliages métalliques utilisés dans les applications nucléaires sont soumis à des températures relativement basses (inférieures à 450°C) pendant des temps importants (supérieurs à 10 ans). A ces températures, les cinétiques de transformation des microstructures contrôlées par la diffusion sont lentes. L’apparition de certaines phases indésirables, susceptibles de fragiliser le matériau, peut survenir après plusieurs années de service. Les coefficients de diffusion jouent donc un rôle crucial en tant que données d'entrée pour modéliser l'évolution de ces microstructures à l’aide de modèles phénoménologiques. Or, la détermination expérimentale des coefficients de diffusion à basse température (T < 600°C) est extrêmement délicate, notamment en raison de la nécessité de caractériser des longueurs de diffusion nanométriques, une difficulté accrue en présence d'irradiation.
Avec le développement de l’analyse chimique en microscopie électronique en transmission (MET) et de la sonde atomique tomographique (SAT), il est désormais possible d’accéder expérimentalement à de très faibles longueurs de diffusion et donc de déterminer des coefficients de diffusion à basse température à l’aide de super-réseaux, qui sont des empilements de couches nanométriques de compositions chimiques différentes. On peut même caractériser l’effet de l’irradiation sur la diffusion en réalisant des irradiations aux ions, permettant de simuler les modifications causées par l’irradiation neutronique sans activer les matériaux. L’objectif de la thèse porte sur le développement d’une méthodologie et la caractérisation de la diffusion hors et sous irradiation dans un système ternaire d’intérêt (Ni–Cr–Fe), représentatif des aciers et des alliages à haute entropie envisagés dans l’industrie nucléaire.
Ce sujet de thèse est une opportunité de travailler avec des techniques expérimentales de pointe, en étroite collaboration avec une équipe de théoriciens du même département, ainsi qu’avec des équipes spécialisées dans l’élaboration de super-réseaux de l’UTBM à Belfort et du CINAM à Marseille.
Apport de l’IA sur les calculs neutroniques déterministes de réacteurs SMR-REP pilotés en eau claire
Face aux enjeux climatiques, la recherche d'énergies propres et fiables se concentre sur le développement de petits réacteurs modulaires à eau sous pression (SMR de type REP), d’une puissance de 50 à 1000 MWth, qui visent à décarboner la production d'électricité et de chaleur dans la prochaine décennie. En comparaison des réacteurs en exploitation, leur taille réduite peut permettre de simplifier leur conception en n'utilisant pas de bore soluble dans l’eau du circuit primaire. Le pilotage repose alors principalement sur le niveau d’insertion des barres absorbantes, qui perturbent la distribution spatiale de puissance lorsqu’elles sont fortement insérées, ce qui provoque des pics de puissance plus prononcés que dans un cœur géré au bore soluble, et complique la gestion de la réactivité. Estimer correctement ces paramètres pose alors des défis en matière de modélisation neutronique, en particulier les effets de l’historique d’insertion des absorbants sur l’évolution isotopique du combustible. Une thèse achevée en 2022 a exploré ces effets à l’aide d’un modèle neutronique analytique, mais des difficultés subsistent car les mouvements d’absorbants neutroniques ne sont pas les seuls phénomènes à influer sur le spectre neutronique. La thèse proposée cherche à développer une méthode alternative qui permette de gagner en robustesse, tout en cherchant à réduire encore les biais de calculs. Une analyse de sensibilité sera réalisée pour identifier les paramètres clés, permettant de créer un méta-modèle utilisant l'intelligence artificielle pour corriger les biais des modèles existants. Ce projet, en collaboration avec l'IRSN et le CEA, permettra d'acquérir une expertise en physique des réacteurs, en simulations numériques et en machine learning.
Le travail de thèse sera effectué 18 mois au CEA de Cadarache et 18 mois à l’IRSN de Fontenay-aux-Roses.
Etude systématique des réactions de diffusion des neutrons sur les matériaux de structure d'intérêt pour les applications électronucléaires
Les réactions de diffusion élastique et inélastique sur les matériaux de structure ont un impact non négligeable sur la simulation du transport des neutrons dans ces matériaux. Les données nucléaires des matériaux de structure d’intérêt pour les réacteurs nucléaires et les études de criticité doivent être connues avec une bonne précision sur un large domaine en énergie du neutron incident, allant de quelques dizaines de meV à plusieurs MeV. Or, la méconnaissance de ces réactions empêche d’atteindre la précision souhaitée. Cette proposition de thèse vise à mener une étude systématique des réactions de diffusion au-delà du domaine des résonances résolues jusqu’à 5 MeV, domaine dans lequel ni le formalisme de la Matrice-R ni le modèle statistique Hauser-Feshbach ne sont applicables pour les matériaux de structure. L’absence de modèle nucléaire utilisable nécessite la mise en place d’un nouveau formalisme alimenté par des mesures à haute résolution des distributions angulaires associées aux réactions de diffusion. Ce travail portera plus précisément sur des mesures déjà réalisées (sodium [1], fer [2]) et sera étendu à d’autres éléments étudiés dans le cadre du projet international INDEN de l’AIEA, tels que le cuivre, chrome et nickel. Pour cela, La base de données expérimentales disponible sera complétée dans le cadre de cette thèse par de nouvelles mesures sur les isotopes du cuivre (Cu63 et Cu65). Les mesures seront réalisées au JRC Geel avec le multi-détecteur ELISA. Concernant le cuivre, les benchmarks intégraux de la base de criticité ICSBEP ont révélés plusieurs lacunes dans les bibliothèques JEFF de données nucléaires évaluées qui questionnent indirectement la connaissance des données nucléaires de l’U235. Par exemple, les benchmarks ZEUS, utilisés pour étudier la section efficace de capture de l’U235 dans le domaine en énergie des neutrons rapides, sont très sensibles aux données nucléaires du réflecteur en cuivre. Ce type de benchmark permettra de quantifier l’impact du nouveau formalisme d’évaluation des données nucléaires des matériaux de structure.
Cette étude permettra au candidat d'acquérir des compétences en physique nucléaire expérimentale et théorique, ainsi qu’en physique neutronique. Les résultats obtenus seront valorisés auprès du groupe de travail JEFF de L'Agence pour l'Energie Nucléaire (OCDE/AEN).
[1] P. Archier, Contribution à l’amélioration des données nucléaires neutroniques du sodium pour le calcul des réacteurs de génération IV, Thèse, Université de Grenoble, 2011.
[2] G. Gkatis, Study of neutron induced reaction cross sections on Fe isotopes at the GELINA facility relevant to reactor applications, Thèse, Université Aix-Marseille, 2024.
Prédire la solubilité grâce à l’IA pour innover en hydrométallurgie
L’un des challenges de l’hydrométallurgie est de parvenir à trouver une molécule extractante à la fois sélective et efficace. Pour ce faire, il faut choisir parmi des milliers de possibilités, action impossible à réaliser par une méthode synthèse-test. A la place, de nombreuses études se basent sur des calculs quantiques pour évaluer l’efficacité d’un ligand à partir de la stabilité du complexe. Cependant, ces méthodes ne permettent pas de prendre en compte certains paramètres physico-chimiques essentiels à une extraction efficace tels que la solubilité.
Ce projet a donc pour objectif de développer un outil informatique basé sur l’IA capable de prédire la solubilité d’une molécule dans un solvant donné à partir de sa structure moléculaire. Dans un premier temps, l’étude se focalisera sur 3 solvants : l’eau, pour laquelle des outils pré-existants serviront de référence, l’acide nitrique 3 M pour être dans des conditions usuelles de l’industrie nucléaire, et l’octanol, solvant organique utilisé pour déterminer le coefficient de partage logP. Le projet se découpe en 4 jalons principaux :
1)Etude bibliographique d’outils similaires existants permettant de choisir les voies les plus prometteuses
2)Recherche de bases de données et complétion si nécessaire par des expériences de solubilité en laboratoire
3)Modification/création du code et entraînement du réseau de neurones sur les bases de données ainsi établies
4)Vérifications des prédictions sur des molécules non-incluses dans les bases de données par comparaison avec des mesures en laboratoire
Comportement de nanocavités sous chargement mécanique : de la compréhension des mécanismes physiques à l’homogénéisation de matériaux nanoporeux
Des nanocavités - typiquement de quelques nm à quelques dizaines de nm - sont souvent observées dans les métaux, par exemple dans les applications hautes températures suite à la condensation de lacunes ou dans les alliages métalliques utilisés dans les réacteurs nucléaires du fait de l’irradiation. La présence de ces nanocavités dégrade le comportement mécanique des matériaux et contribue à la rupture. Il est donc nécessaire de déterminer les mécanismes physiques associés au comportement de ces nanocavités sous chargement mécanique et d’obtenir des modèles homogénéisés décrivant le comportement macroscopique des matériaux nanoporeux. Les résultats disponibles dans la littérature restent à ce jour limités, notamment en ce qui concerne la représentativité des simulations réalisées et des modèles proposés vis-à-vis des applications d’intérêt. Cela inclut par exemple la prise en compte des défauts cristallins entourant les cavités, l’effet des chargements cycliques et la localisation des nanocavités au niveau des joints de grains. Les objectifs de cette thèse sont donc de déterminer le comportement de nanocavités sous chargement mécanique et les mécanismes physiques associés en considérant des situations réalistes vis-à-vis des applications, de développer des modèles analytiques à bases physiques permettant de décrire le comportement de nanocavités sous chargement mécanique, et enfin de proposer des modèles homogénéisés adaptés aux nanocavités et utilisables pour simuler la rupture par croissance et coalescence de cavités. Les cas d’applications visés sont ceux liés aux alliages métalliques sous irradiation mais les éléments de compréhension obtenus et les modèles développés pourront être utilisés dans un contexte plus large. Afin d’atteindre ces objectifs, des simulations de Dynamique Moléculaire (DM) seront réalisées, analysées à partir de la théorie élastique des dislocations et utilisées pour proposer des modèles homogénéisés pertinents pour les matériaux nanoporeux.
Etude des transitions de régime d’écoulement en post-assèchement
Les écoulements diphasiques interviennent dans de nombreux systèmes fluides, notamment pour le refroidissement des réacteurs nucléaires. Selon le flux thermique échangé dans le cœur du réacteur, le débit, la sous-saturation ou la pression, on peut constater des écoulements purement monophasiques, des écoulements à bulles ou annulaires (avec un film liquide au contact de la paroi et un cœur de vapeur).
Lors d’un accident de perte de réfrigérant primaire, le cœur du réacteur qui contient les crayons combustibles s’échauffe jusqu’à la crise d’ébullition lorsque le flux thermique est suffisamment important. Une illustration des régimes d’écoulements diphasiques lors de cet accident est présenté en figure 1. Un film de vapeur se forme rapidement et isole thermiquement les crayons, tandis que du liquide subsiste dans le cœur de l’écoulement. Les crayons du cœur sont asséchés, leur surface n’est refroidie que par de la vapeur et l’échange thermique à la paroi est ainsi dégradé [1]. Cet écoulement est du type "inverted annular film boiling". Au fur et à mesure que le liquide se vaporise, le film de vapeur s’épaissit et la turbulence induite aura tendance former des vagues a l’interface liquide-vapeur et à déstabiliser l’interface jusqu’à la formation de poches de liquides (inverted slug film boiling). Puis, l’évaporation et la fragmentation de ces poches vont mener à la formation d’un écoulement dispersé à gouttes (dispersed film boiling).
Actuellement, les transitions de régime d’écoulement dans cette configuration sont très mal identifiées [1], [2] bien que la connaissance de celles-ci soit importante pour l’étude de refroidissement du cœur du réacteur nucléaire. Une des principales difficultés expérimentales réside dans la nécessité de chauffer fortement les parois pour établir un film de vapeur et maintenir celui-ci, rendant de ce fait les sections d’essai opaques. Il est donc particulièrement complexe d’accéder à une visualisation directe et plus encore à des mesures de paramètres locaux comme les champs de températures et vitesses fluides. Les résultats expérimentaux disponibles dans la littérature sur ce sujet sont donc très limités et insuffisants pour développer un modèle physique [1], [3], [4], [5].
Cette thèse, qui constitue une première étape vers l’identification précise des transitions de régime, porte sur l’étude de l’effet purement hydrodynamique, en couplant des approches expérimentale et analytique. Afin d’obtenir une compréhension de la physique des différents phénomènes, la configuration d’un écoulement de liquide au cœur d’un écoulement gazeux est proposée. Dans celle-ci, la déformation de l’interface, la vitesse du gaz et la vitesse du liquide peuvent jouer sur la transition d’un régime à l’autre [6], [7] : l’interface lisse devient perturbée par des vagues (instabilités de Kelvin-Helmholtz), des gouttes sont arrachées de l’interface. Une analyse paramétrique sera effectuée en faisant varier les débits liquides et gazeux et ainsi l’épaisseur du film gazeux pour observer ces différents phénomènes et comprendre les effets de chaque paramètre sur les transitions de régimes. Expérimentalement, un banc a récemment été conçu au DM2S/STMF/LE2H afin d’étudier plus particulièrement ces transitions grâce à une visualisation des déformations de l’interface. Des adaptations pourront être apportées avec de nouvelles mesures ou éventuellement une nouvelle méthodologie si nécessaire.
A partir des résultats expérimentaux, il sera nécessaire d’identifier, voire de définir, les nombres adimensionnels pertinents pour décrire les phénomènes observés. L’analyse portera ensuite sur la caractérisation des transitions de régimes sur la base de ces nombres adimensionnels, afin de proposer une carte des transitions de régimes d’écoulements.
La combinaison des résultats obtenus permettra de renforcer les modèles utilisés dans les codes de calcul comme le code de thermohydraulique CATHARE, développé au CEA en particulier pour les études de sureté des réacteurs nucléaires. Cette thèse présente donc un fort intérêt académique par l’exploitation d’une installation expérimentale innovante et la production de résultats nouveaux qui confirmeront également son intérêt sur le plan industriel pour l’amélioration de la connaissance des phénomènes importants dans la démonstration de sûreté des réacteurs nucléaires.
Références :
[1] M. Ishii et G. De Jarlais, « Flow visualization study of inverted annular flow of post-dryout heat transfer region », Nuclear Engineering and Design, 1987.
[2] G. De jarlais, M. Ishii, et J. Linehan, « Hydrodynamic stability of inverted annular flow in an adiabatic simulation », Argonne National Laboratory, CONF-830702-9, 1983.
[3] T. G. Theofanous, « The boiling crisis in nuclear reactor safety and performance », International Journal of Multiphase Flow, vol. 6, no 1, p. 69-95, févr. 1980, doi: 10.1016/0301-9322(80)90040-3.
[4] N. Takenaka, T. Fujii, et others, « Flow pattern transition and heat transfer of inverted annular flow », Int. J. Multiphase Flow, 1989.
[5] M. A. El Nakla, D. C. Groeneveld, et S. C. Cheng, « Experimental study of inverted annular film boiling in a vertical tube cooled by R-134a », International Journal of Multiphase Flow, vol. 37, p. 37-75, 2011.
[6] Q. Liu, J. Kelly, et X. Sun, « Study on interfacial friction in the inverted annular film boiling regime », Nuclear Engineering and Design, vol. 375, 2021.
[7] K. K. Fung, « Subcooled and low quality film boiling of water in vertical flow at atmospheric pressure », PhD Thesis, Argonne National Laboratory, 1981.