Combustion d'hydrogène et d'ammoniac en milieux poreux : expériences et modélisation

- Contexte
Les perspectives énergétiques actuelles suggèrent l'utilisation de l'hydrogène (H2) et de l'ammoniac (NH3) comme vecteurs d'énergie décarbonés. La combustion du NH3 offre des avantages tels qu'une densité énergétique élevée et un stockage sûr, mais présente une plage d’inflammabilité étroite et des émissions élevées de NOx. Il est possible d'obtenir de l'hydrogène par craquage partiel d’ammoniac pour créer des mélanges ayant des propriétés de combustion plus favorables, mais il reste des questions ouvertes concernant les émissions de polluants et la teneur en NH3 imbrûlé.

- Défis
Les brûleurs poreux sont des candidats prometteurs pour la combustion de mélanges NH3/H2 à faibles émissions polluantes. Malheureusement, les problèmes de durabilité des matériaux et la complexité de la stabilisation des flammes constituent encore des obstacles importants à leur industrialisation. Toutefois, les récentes avancées dans le domaine de la fabrication additive permettent un design avancé de matrices poreuses, leur caractérisation expérimentale restant difficile en raison de l'opacité de la matrice solide.

- Objectifs de recherche
Le doctorant exploitera un banc expérimental au CEA Saclay pour mener des expériences de combustion avec des mélanges NH3/H2/N2+air dans différents brûleurs poreux. Les tâches principales incluront la conception de nouvelles géométries poreuses, la comparaison des résultats expérimentaux avec les simulations numériques, un travail de modélisation 1D par moyennes volumiques et théorie asymptotique. Les mesures expérimentales comprendront : l'anémométrie à fil chaud, la thermométrie infrarouge, l'analyse de la composition des gaz de sortie, la chimiluminescence et les diagnostics laser. Les brûleurs poreux seront fabriqués à l'aide de techniques d'impression 3D avec des matériaux tels que l'acier inoxydable, l'inconel, l'alumine, la zircone et le carbure de silicium.

La recherche vise à développer des brûleurs poreux plus robustes et plus efficaces pour la combustion de mélanges NH3/H2, améliorant ainsi leur application pratique pour atteindre la neutralité carbone. Le candidat contribuera à faire progresser le domaine grâce à des données expérimentales, des conceptions innovantes et des techniques de modélisation améliorées.

Modélisation de la chute de gouttes dans un volume libre, en support au code système CATHARE

Cette thèse porte sur l'étude de la chute de gouttes dans des volumes libres, dans le cadre de l'amélioration continue des modèles physiques du code CATHARE, utilisé pour les études de sûreté des Réacteurs à Eau Pressurisée. Les modèles actuels reposent sur les travaux d'Ishii et Zuber, qui modélisent la vitesse de chute des gouttes dans un fluide diphasique. L'objectif de la thèse est de raffiner la précision de ce modèle en y intégrant des paramètres supplémentaires et en le validant grâce à des expériences telles que celles de Dampierre et CARAYDAS. Le doctorant devra concevoir un modèle mécaniste plus représentatif, fondé sur des données expérimentales ou des simulations CFD si nécessaire. L'innovation réside dans le développement d'une modélisation plus fidèle des processus de chute de gouttes, ouvrant la voie à des applications spécifiques, telles que la modélisation des sprays, et contribuant ainsi à la validation du code CATHARE dans des domaines supplémentaire.

Etude thermodynamique du ternaire K2CO3-CO2-H2O pour le développement de procédés NET (Negative Emission technologie) et SAF (Sustainable Air Fuel)

Cette thèse s'inscrit dans le cadre de la thématique accélérée Inter-conversion énergétique : de l’atome et du photon à l’hydrogène et aux molécules durables.
La bioénergie avec captage et stockage du carbone (BECCS) utilise l'énergie de la biomasse tout en captant le dioxyde de carbone libéré par le processus, ce qui se traduit par des émissions négatives dans l'atmosphère (Negative Emission Technologie). Le procédé de référence en Europe utilise le carbonate de potassium [1] mais désorbe le CO2 à pression atmosphérique, alors que sa séquestration ou son hydrogenation en molécules durables, notamment les SAF (Sustainable AirFuel) nécessite de fortes pressions.
La thèse consiste en l’acquisition de nouvelles données thermodynamiques et thermo-chimiques à haute température/pression nécessaires à l'optimisation énergétique d’un tel procédé [2] et à leur intégration dans une modélisation thermodynamique.
On fera par la suite un remontage du procédé global afin de pouvoir quantifier le gain énergétique et environnemental attendu.
La thèse se déroulera au sein du Laboratoire de modélisation thermodynamique et thermochimie (LM2T) en collaboration avec le LC2R (DRMP/SPC) pour la partie expérimentale.

Références :
[1]K. Gustafsson, R. Sadegh-Vaziri, S. Grönkvist, F. Levihn et C. Sundberg, «BECCS with combined heat and power: assessing the energy penalty,» Int. J. Greenhouse Gas Control, vol. 110, p. 103434, 2021.
[2] S. Zhang, X. Ye et Y. Lu, «Development of a Potassium Carbonate-based Absorption Process with Crystallization-enabled High-pressure Stripping for CO2 Capture: Vapor–liquid Equilibrium Behavior and CO2 Stripping Performance of Carbonate/Bicarbonate,» Energy Procedia, 2014

Effet de la microstructure et de l’irradiation sur la sensibilité à la fissuration intergranulaire de l’alliage 718 en milieu REP.

L’alliage 718, alliage à base nickel, est utilisé dans les assemblages combustibles des réacteurs à eau pressurisée (REP). Ces composants sont soumis en service à des sollicitations mécaniques élevées, à l’irradiation neutronique et à une exposition au milieu primaire. Classiquement, cet alliage montre une très bonne résistance à la fissuration intergranulaire. Toutefois, il existe des conditions de microstructure et/ ou d’irradiations qui, en modifiant les propriétés mécaniques et les mécanismes de plasticité, rendent le matériau sensible à la fissuration intergranulaire en milieu primaire REP.

Dans ce cadre, l’objectif de cette thèse sera d’étudier l’influence de la microstructure (via différents traitements thermiques) et de l’irradiation sur la localisation de la déformation et sur la sensibilité à la fissuration intergranulaire en milieu primaire REP.

Dans cet objectif, deux nuances, l’une réputée sensible et l’autre non, seront testées. Des essais de traction in-situ MEB sur des échantillons dont la microstructure aura été préalablement caractérisée par EBSD seront réalisés afin d’identifier les types de localisation de la déformation intra et intergranulaire et leur évolution. L’état non irradié sera caractérisé et sera l’état de référence. Par ailleurs, des essais d’exposition et de fissuration intergranulaire en milieu primaire (coupons, traction lente, etc…) seront réalisés sur les deux nuances et à différents niveaux d’irradiation. La microstructure ainsi que l’oxydation de surface et intergranulaire des éprouvettes seront caractérisées par différentes techniques de microscopie (MEB, EBSD, FIB et microscopie électronique en transmission).

Cette thèse constitue pour le candidat l’occasion de traiter une problématique de durabilité de matériaux métalliques dans leur environnement suivant une démarche scientifique pluridisciplinaire alliant métallurgie, mécanique et physico-chimie et reposant sur la mise en œuvre de techniques de pointe variées disponibles au CEA. Les compétences qu’il sera ainsi amené à acquérir pourront donc être valorisées lors de la suite de sa carrière dans le monde industriel (y compris hors nucléaire) ou académique.

Développement d’un modèle de chimie transport, sous radiolyse de l’eau, d’un combustible usé en stockage géologique profond

Le stockage direct des combustibles usés (CU) est une solution alternative à leur retraitement pour la gestion des déchets nucléaires. Ce stockage direct des CU en milieu géologique profond pose des défis scientifiques liés à la compréhension fine des processus de dissolution et de libération des radionucléides. Ce sujet de thèse propose de développer un modèle scientifique détaillé, capable de décrire les mécanismes physico-chimiques complexes, tels que la radiolyse de l'eau et l'interaction entre le combustible irradié et son environnement. L'objectif est de proposer une modélisation du transport réactif précise pour améliorer la prédiction à long terme des performances du stockage. En utilisant des approches mécanistes, cette thèse s’inscrit dans une démarche d’aller-retour entre modélisation et expérimentation, visant à affiner la compréhension des mécanismes d'altération et à valider les hypothèses par des données expérimentales. Finalement, en s'appuyant sur des modèles existants, comme le modèle opérationnel radiolytique, ce travail proposera des améliorations pour réduire les hypothèses simplificatrices actuelles. Le candidat contribuera à des enjeux industriels et sociétaux majeurs liés à la gestion des déchets nucléaires et permettra d'apporter des solutions aux enjeux de sûreté associés.

Etude de la fabrication additive fil d'un composant nucléaire de géométrie complexe

L’objectif général de la thèse est d’étudier la faisabilité d'un composant du réacteur de fusion DEMO par fabrication additive fil ou « WAM » (Wire Additive Manufacturing). Pour cela, le doctorant devra tout d’abord concevoir et fabriquer des pièces de démonstration représentatives de différentes sous-parties du composant dans les cellules de fabrication additive du laboratoire. Il prendra en main les logiciels de CAO/FAO pour fabriquer des pièces de complexité et taille croissante, en assurant la répétabilité de leur fabrication.
Ces pièces feront l’objet d’un travail de caractérisation, tout d’abord dimensionnelle, afin de vérifier leur conformité géométrique au regard des spécifications du projet ; mais aussi microstructurale et métallurgique, afin de garantir la qualité de fabrication, notamment l’absence de défaut au sein du matériau (porosité, inclusions…) ou de phases métallurgiques nuisibles à sa tenue mécanique.
Enfin, le doctorant sera également amené à simuler par la méthode des éléments finis la fabrication de certaines pièces afin d’analyser l’évolution de paramètres d’intérêt, comme la température, au cours de la fabrication et d’estimer l’état de déformation et de contrainte après fabrication. Ces simulations pourront être utilisées pour corriger certains écarts entre l’attendu et le réalisé, dans le cadre d’un dialogue calcul-essai qui verra la mise en place d’une instrumentation servant également la validation des modèles. Ces simulations seront réalisées à l’aide du code de calcul par éléments finis Cast3M développé au CEA.

Effet de la déformation plastique sur la rupture par clivage : Découplage entre la plasticité induite et l’évolution de la microtexture

Dans le domaine nucléaire, l’intégrité des composants doit être assurée pendant toute la durée d’exploitation, et ceci même en cas d’évènement accidentel. La demande de justification de la tenue des composants face au risque de rupture brutale est croissante et se généralise à de nombreuses lignes de tuyauterie et équipements. Le principe de la démonstration consiste à montrer que, même en présence d’un défaut, l’équipement est capable de supporter les chargements qu’il est susceptible de subir.
Une vigilance particulière est portée sur la rupture fragile par clivage, à cause de son caractère instable et catastrophique qui conduit immédiatement à la ruine du composant. La rupture fragile est sensible au niveau de plasticité et de triaxialité en pointe de fissure, ce qui explique l’effet structure bénéfique souvent observé sur des composants réels par rapport aux éprouvettes laboratoire. L’enjeu industriel est de mieux comprendre le rôle de la plasticité en relation avec la microtexture sur la rupture fragile, afin de faire évoluer les critères de prédiction actuels.

Au cours de cette thèse, la résistance à la rupture fragile de l'acier sera évalué après prédéformé avec différents types de chargements mécaniques. A la fin de la thèse le candidat aura acquis des compétences solides sur la réalisation d'essais mécaniques, les analyses microscopiques et en simulation numérique. Les travaux seront réalisés entre le laboratoire LISN du CEA et le centre de matériaux de l'école des mines de paris.

Etude de la dynamique des réacteurs rapides à sels fondus en convection naturelle

Les réacteurs à sels fondus (RSF) sont présentés comme des systèmes intrinsèquement stables vis-à-vis des perturbations de réactivité du fait du couplage entre température du sel et puissance nucléaire conduisant à un comportement homéostatique du réacteur. Néanmoins, bien que les RSF présentent des caractéristiques intéressantes pour la sûreté, le faible retour d’expérience limite nos connaissances sur leur comportement dynamique, qui restent encore parcellaires. Ce sujet de thèse propose de contribuer au développement d’une méthodologie d’analyse de la dynamique des RSF visant à caractériser les phénomènes complexes de couplage neutronique–thermohydraulique intervenant lors d’un fonctionnement en régime de convection naturelle, ainsi qu’à identifier des séquences de transitoires potentiellement instables, à hiérarchiser les phénomènes physiques source de ces instabilités et à proposer des modèles physiques de ces phénomènes.

Ces travaux contribueront à la définition d’une méthodologie orientée sûreté en soutien aux travaux de conception des RSF à partir de l’étude du comportement dynamique du réacteur en transitoire à travers l’analyse dimensionnelle et l’étude de la stabilité de l’écoulement. Cette méthodologie vise à définir des critères simples et robustes pour garantir la sûreté intrinsèque d’un RSF à spectre rapide, en fonction de ses paramètres de conception et d’opération permettant de respecter les limites du domaine de fonctionnement.

Ce travail de thèse se situe à la croisée de l’analyse théorique des phénomènes physiques régissant le comportement du réacteur, en particulier autour de l’étude des régimes instables (de nature oscillatoire ou divergente) dus au couplage neutronique-thermohydraulique en convection naturelle, et de la mise en place d’outils analytiques et numériques pour la réalisation des calculs visant à caractériser ces phénomènes.

Le doctorant sera positionné au sein d’une unité de recherche sur les systèmes nucléaires innovants. Il développera des compétences en modélisation des RSF et en analyse de sûreté. Il pourra valoriser ses travaux auprès de la communauté internationale de recherche sur les RSF.

Développement d'une condition limite de couplage multi-échelles / multi-modèles

Dans le domaine de la thermohydraulique, les codes CFD (Computational Fluid Dynamics) font partie des outils de calcul scientifique les plus couramment utilisés pour des analyses de conception et d'évaluation de sûreté.
Les codes CFD proposent une résolution tridimensionnelle des équations de Navier-Stokes.
L'approche la plus souvent retenue consiste à résoudre une formulation moyennée des équations de Navier-Stokes (Reynolds-averaged Navier-Stokes).
Cette approche permet d'obtenir une résolution détaillée d'un écoulement au prix d'un nombre limité d'hypothèses (modèles de turbulence, lois de parois).
La discrétisation spatiale du domaine de calcul requiert un nombre de volumes de contrôle élevé pour atteindre un bon niveau de précision.
Les ressources informatiques nécessaires pour mener à bien un calcul industriel sont importantes et ne permettent pas, à l'heure actuelle, d'envisager de traiter des cas de transitoires complexes, par exemple diphasique, dans le circuit primaire complet d'un réacteur nucléaire.

Une autre approche consiste à retenir une discrétisation spatiale plus grossière pour réduire le temps de calcul.
Selon les cas, les bonnes pratiques de l'approche RANS ne peuvent pas être respectées. On doit alors ajouter un certain nombre d'hypothèses pour assurer la précision du calcul qui se traduisent par l'ajout de modèles supplémentaires comme par exemple des lois de pertes de charges, des corrélations de transfert thermique, des termes de mélange, etc. Cette approche est souvent appelée approche poreuse.

Quelle que soit l'approche retenue, le système modélisé est généralement un circuit ouvert. Des conditions aux limites sont donc nécessaires afin que le système d'équation puisse être résolu.

Les méthodes de couplage multi-échelle proposent d'utiliser chaque approche là où elle est la plus indiquée. L'objectif est d'utiliser l'approche la moins coûteuse possible tout en maintenant un bon niveau de détail dans la représentation des phénomènes physiques impliqués.
Les approches de couplage distinguent les méthodologies unidirectionnelles (one-way coupling) des méthodologies bidirectionnelles (two-way coupling).
Dans la méthodologie unidirectionnelle, les conditions aux limites issues d'un premier calcul sont fournies à un second calcul. Il n'y a pas de rétroaction du second code vers le premier.
Dans la méthodologie bidirectionnelle, les codes échangent, le plus souvent à chaque pas de temps, par l'intermédiaire des conditions aux limites qui permettent une rétroaction entre les deux codes. C'est cette dernière méthodologie qui est retenue.

Les conditions aux limites classiquement utilisées sont le plus souvent développées pour des calculs où seules des données macroscopiques sont disponibles, débit et température en entrée et pression en sortie.
Dans le cas d'un couplage multi-échelle des informations plus détaillées sont disponibles, par exemple les champs de vitesse et de pression.
Dans le cadre de cette thèse, on cherche à développer des conditions aux limites qui puissent exploiter toutes les informations complémentaires nécessaires afin de rendre l'interface entre les deux codes la plus transparente possible.
Pour fixer les idées, on souhaiterait que, dans le cas théorique où deux instances d'un même code se partagent un domaine physique en appliquant exactement la même modélisation et discrétisation spatiale, les résultats obtenus par le couplage de ces deux instances soient identiques à celui d'une unique instance du même code calculant le domaine complet.

Construction d'interactions en théorie effective des champs pour la physique nucléaire théorique

La capacité d'un modèle du noyau à donner une description prédictive des phénomènes nucléaires (que ce soit dans un but théorique ou dans l’optique de produire des données nucléaires pour les applications) est conditionnée par la possibilité de construire un cadre théorique systématiquement améliorable, avec des approximations contrôlées et une estimation des incertitudes et biais associés. C'est l'objectif des méthodes dites ab initio, qui reposent sur deux étapes :
1 - La construction d'une interaction inter-nucléons compatible avec la théorie sous-jacente (la chromodynamique quantique) et ajustée dans les noyaux légers, suivant la théorie effective des champs (EFT).
2 - La résolution du problème nucléaire à A corps à une précision donnée (pour la structure ou les réactions) pour faire des prédictions pour tous les noyaux d'intérêt. La spécificité des méthodes ab initio permet et appelle à une propagation des incertitudes provenant de l'interaction jusqu'aux prédictions pour les données nucléaires.

Cette thèse s’inscrit principalement dans la 1ère étape. L'objectif de la thèse est de construire une famille d'interactions ab initio en développant une nouvelle procédure d'ajustement des paramètres de la théorie, appelés constantes de basse énergie (LECs), sur les données expérimentales disponibles (en incluant le calcul de covariances pour des analyses de sensitivité). L'ajustement se fera sur des données de structure mais aussi de réaction dans les noyaux légers. Ceci ouvrira en outre la porte à une nouvelle évaluation des sections p + n -> d + gamma (qui ont de larges incertitudes et sont néanmoins importantes pour les applications de neutronique) dans le cadre moderne des théories effectives de champs.

La thèse est en collaboration entre le CEA/IRESNE Cadarache et l'IJCLab d'Orsay, et sera partagée entre les deux instituts (18 mois au CEA/IRESNE, puis 18 mois à l'IJCLab). Les débouchés de la thèse incluent la recherche et les labos de R&D en physique nucléaire.

Top