Couplage entre transfert de masse et hydrodynamique diphasique : investigation expérimentale et validation/calibration de modèles

Dans le contexte de la transition énergétique et de la place cruciale du nucléaire dans un mix énergétique décarboné, comprendre, puis atténuer les conséquences de tout accident conduisant à fusion, même partielle, du cœur d’un réacteur représente une direction de recherche impérative.

Lors d'un accident avec fusion du cœur, un bain de matière en fusion, appelée corium, peut se former en fond de cuve. La composition du bain peut évoluer au cours du temps. Le bain de corium n'est pas homogène et peut se stratifier en plusieurs phases immiscibles. Avec l'évolution de la composition globale du corium, les propriétés des différentes phases évoluent. Ainsi l'ordre de stratification vertical des phases peut changer, ce qui induit un réarrangement vertical des phases. Lors de ce réarrangement une phase traverse l'autre sous forme de gouttes. L'ordre des phases ainsi que leurs mouvements sont de première importance car ils influencent grandement les flux thermiques transmis à la cuve. Mieux comprendre ces phénomènes permets d'améliorer la sûreté et le design autant des réacteurs actuels que futures.

Des premières modélisations ont déjà été réalisées, mais elles manquent de validation et de calibration. Les expériences prototypiques sont difficiles à mettre en place et à court terme aucune n'est prévue. Le présent sujet de thèse propose de combler ce manque en réalisant une étude expérimentale du phénomène à l'aide d'un système simulant à base d'eau permettant une instrumentation locale et de grandes campagnes d'essai. Le but est de valider, calibrer les modèles existants, voire en développer de nouveaux, avec en ligne de mire la possibilité de capitaliser ces résultats dans la plateforme logiciel PROCOR, qui est utilisée pour réaliser des estimations de probabilité de percement de la cuve d'un réacteur. Le dispositif expérimental serait construit et opéré au laboratoire LEMTA de l'université de Lorraine où le doctorant serait détaché. En termes d'expériences, deux cas seront à étudier, le cas goutte seule, et le cas stratifié avec formation de goutte via instabilités de Rayleigh-Taylor.

La thèse sera principalement expérimentale avec un volet utilisation de code pour le calage, la validation et pourra inclure un volet modélisation. Elle se déroulera dans son intégralité au laboratoire LEMTA à Nancy. Le doctorant profitera ainsi des compétences du LEMTA en ce qui concerne le développement de dispositifs expérimentaux simulants, les transferts dans les fluides et la métrologie. Il sera intégré à un environnement dynamique composé de chercheurs et d'autres doctorants. Le candidat devra avoir des connaissances en phénomènes de transferts (de masses notamment), ainsi qu'une appétence certaine pour les sciences expérimentales.

Etude de l'effet du dopage sur la durée de vie de matériaux d'électrode pour batteries Li-ion avancées

Le développement de nouveaux matériaux d’électrodes pour les batteries Li-ion est principalement orientée vers 2 objectifs souvent contradictoires : augmenter l’énergie embarquée, et donc l’autonomie des véhicules, et baisser le coût des batteries. Les matériaux de structure NaCl désordonnés, tels que Li2MnO2F, grâce à la combinaison de leur composition riche en Mn peu couteux et d’une forte capacité de stockage des ions Li, permet de concilier ses deux aspects. Malheureusement, ces matériaux subissent une dégradation rapide en cyclage qui limite leur durée de vie. Il est donc nécessaire d’agir sur cette dégradation pour rendre ces matériaux compétitifs. Récemment, notre groupe a développé une stratégie de stabilisation du matériau par modification de leur structure qui fait l’objet d’un brevet. Le but de cette thèse est d’approfondir cette stratégie en améliorant la compréhension du mécanisme de stabilisation en variant ses paramètres. Le doctorant aura accès à tous les outils de synthèse pour réaliser ces nouveaux matériaux ainsi qu'à ceux de caractérisation électrochimiques de notre plateforme batterie pour évaluer leur performances. Il sera également amené à effectuer des caractérisations structurales poussées, notamment via différentes méthodes de diffraction des rayons X (y compris au synchrotron).

Génération assistée de noyaux de calculs complexes en mécanique du solide

Les lois de comportement utilisées dans les simulations numériques décrivent les caractéristiques physiques des matériaux simulés. À mesure que notre compréhension de ces matériaux évolue, la complexité de ces lois augmente.L'intégration de ces lois constitue une étape critique pour la performance et la robustesse des calculs scientifiques. De ce fait, cette étape peut conduire à des développements intrusifs et complexes dans le code.

De nombreuses plateformes numériques telles que FEniCS, FireDrake, FreeFEM, Comsol, proposent des techniques de génération de code à la volée (JIT, pour Just In Time) pour gérer différentes physiques. Cette approche JIT réduit considérablement les temps de mise en oeuvre de nouvelles simulations, offrant ainsi une grande versatilité à l'utilisateur. De plus, elle permet une optimisation spécifique aux cas traités et facilite le portage sur diverses architectures (CPU ou GPU). Enfin, cette approche permet de masquer les détails d'implémentation: une évolution de ces derniers est invisible pour l'utilisateur et est absorbée par la couche de génération de code.

Cependant, ces techniques sont généralement limitées aux étapes d'assemblage des systèmes linéaires à résoudre et n'incluent pas l'étape cruciale d'intégration des lois de comportement.

S'inspirant de l'expérience réussie du projet open-source mgis.fenics [1], cette thèse vise à développer une solution de génération de code à la volée dédiée au code de mécanique des structures de nouvelle génération Manta [2] développé par le CEA. L'objectif est de permettre un couplage fort avec les lois de comportement générées par MFront [3], améliorant ainsi la flexibilité, les performances et la robustesse des simulations numériques.

Le doctorant recherché devra posséder une solide culture numérique et un goût prononcé pour la simulation numérique et la programmation en C++. Il devra faire preuve d’autonomie et être force de proposition. Le doctorant bénéficiera d'un encadrement de la part des développeurs des codes MFront et Manta (CEA), ainsi que des développeurs du code A-Set (collaboration entre Mines-Paris Tech, Onera, et Safran). Cette collaboration au sein d'une équipe multidisciplinaire offrira un environnement stimulant et enrichissant pour le candidat.

De plus, le travail de thèse sera valorisé par la possibilité de participer à des conférences et de publier des articles dans des revues scientifiques à comité de lecture, offrant une visibilité nationale et internationale aux résultats de la thèse.

Le doctorat se déroulera au CEA Cadarache, dans le sud est de la France, au sein du département d'études des combustibles nucléaires de l'Institut REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) [4]. Le laboratoire d'accueil est le LMPC dont le rôle est de contribuer au développement des composants physiques de la plateforme numérique PLEIADES [5], co-développée par le CEA et EDF.

[1] https://thelfer.github.io/mgis/web/mgis_fenics.html
[2] MANTA : un code HPC généraliste pour la simulation de problèmes complexes en mécanique. https://hal.science/hal-03688160
[3] https://thelfer.github.io/tfel/web/index.html
[4] https://www.cea.fr/energies/iresne/Pages/Accueil.aspx
[5] PLEIADES: A numerical framework dedicated to the multiphysics and multiscale nuclear fuel behavior simulation https://www.sciencedirect.com/science/article/pii/S0306454924002408

Modélisation multiphysique du frittage du combustible nucléaire : effet de l’atmosphère sur la cinétique du retrait

Les combustibles de dioxyde d’uranium (UO2), utilisés dans les centrales nucléaires sont des céramiques, dont le frittage en phase solide est une étape-clé de la fabrication. L’étape de frittage consiste en un traitement thermique sous pression partielle contrôlée de O2 permettant de consolider, densifier le matériau et faire grossir les grains de UO2. Le grossissement des grains induit la densification du matériau (fermeture des pores) et le retrait macroscopique de la pastille. Si le compact (poudre comprimée par pressage avant le frittage) admet de fortes hétérogénéités de densité, une différence de densification dans la pastille peut avoir lieu entraînant un retrait différentiel et l’apparition de défauts. De plus, l'atmosphère de frittage, c'est-à-dire la composition du gaz dans le four, impacte la cinétique de grossissement des grains et donc le retrait de la pastille. Ainsi, une simulation avancée permettrait d'améliorer la compréhension des mécanismes observés ainsi que d'optimiser les cycles de fabrication.

Cette thèse se consacre à la mise en place d’un modèle thermique-chimique-mécanique du frittage pour simuler l’impact de la composition et les propriétés physiques de l’atmosphère sur la densification du combustible à l’échelle de la pastille. Cette échelle nous permettra de considérer les gradients de densité issus du pressage, mais également de prendre en compte la cinétique de diffusion d’oxygène impactant localement la vitesse de densification qui elle-même impactera le processus de transport. Une simulation multiphysique est nécessaire pour simuler le couplage de ces phénomènes.

Ce travail de thèse sera mené au sein du Laboratoire commun MISTRAL (Aix-Marseille Université/CNRS/Centrale Marseille et l'institut IRESNE du CEA-Cadarache). Le doctorant valorisera ses résultats au travers de publications et participations à des congrès et aura acquis de solides compétences qui sont recherchées et valorisables dans un grand nombre de domaines académiques et industriels.

Potentialités des liants silico-magnésiens pour le conditionnement de terres contaminées

La contamination des sols par des substances radioactives constitue un enjeu majeur en matière de santé publique et de protection de l’environnement. Parmi les différentes stratégies envisageables pour la gestion de ces sols pollués, l’excavation des matériaux contaminés ouvre la voie à une réutilisation sécurisée du site. Les terres ainsi extraites, lorsqu’elles sont de faible ou moyenne activité à vie courte, doivent être stabilisées avant leur stockage. Dans ce contexte, le procédé de cimentation est apprécié pour son coût modéré, sa simplicité de mise en œuvre et sa capacité à confiner de nombreux polluants. Toutefois, son application aux sols riches en argile gonflante présente deux limites majeures : une mauvaise ouvrabilité du matériau à l’état frais, et une instabilité volumique à l’état durci. Face à ces contraintes, la thèse propose d’évaluer le potentiel des ciments silico-magnésiens comme alternative aux ciments silico-calciques traditionnels. Ces nouveaux liants suscitent à l’heure actuelle un intérêt croissant, notamment pour la construction en terre crue et le développement de matériaux à faible empreinte carbone.
Dans un premier temps, l’objectif sera d’étudier l’influence de différents paramètres de formulation sur la réactivité et les propriétés des ciments silico-magnésiens. Une étude approfondie des interactions entre les phases cimentaires et les principaux constituants des sols contaminés sera ensuite menée. Enfin, la durabilité des matériaux formulés sera investiguée au moyen d’essais de lixiviation qui alimenteront une modélisation couplée chimie – transport, visant à mieux comprendre les mécanismes de dégradation de ces matériaux et leur évolution à long terme.
Ce projet de recherche s'adresse à un doctorant souhaitant approfondir ses compétences en physico-chimie des matériaux, et contribuer à des solutions innovantes pour la gestion des sols pollués et le développement de liants à faible impact environnemental.

Elaboration et évaluation de la durabilité de membranes multicouches permsélectives à l’eau, applicables à la conversion du CO2 en électro-carburants

L’hydrogénation catalytique du CO2 en carburants est envisagée pour décarboner certains modes de transport difficilement électrifiables. Cependant, certaines des réactions de synthèse envisagées sont thermodynamiquement équilibrées (rendements de conversion du CO2 limités) et une dégradation du catalyseur par l’eau produite par la réaction est observée. L’utilisation de réacteurs membranaires, permettant la séparation de l’eau, est envisagée. Pour cela, le développement de membranes permsélectives à l’eau, sans défauts et résistantes aux conditions de synthèse, est nécessaire. Des études antérieures ont ciblé l’utilisation de membranes zéolithes (LTA et SOD) pour cette application. Cependant la présence de défauts réduit leur sélectivité, et leurs performances se dégradent en fonctionnement. L’objectif de cette thèse est donc d’étudier le colmatage des défauts des membranes et le dépôt de couches protectrices à leur surface pour améliorer leurs performances et leur durabilité. Pour cela, le dépôt de couches zéolithes permsélectives sera tout d’abord réalisé par voie hydrothermale sur des supports poreux adaptés. Le colmatage des défauts par imprégnation/conversion de précurseurs de silice en milieu CO2 supercritique sera ensuite étudié. Enfin, différentes couches protectrices (zéolithe, oxyde céramique…) seront déposées sur les membranes (voies sol-gel, CO2 supercritique, hydrothermale). Les dépôts seront caractérisés (DRX, MEB, porosimétrie, elipsométrie…) afin de s’assurer de la nature chimique du dépôt, de son épaisseur/homogénéité et de sa porosité. Les performances en perméation de gaz seront évaluées aux différentes étapes d’élaboration et la durabilité des membranes sera étudiée en présence de vapeur d’eau à différentes températures.
Le/la candidat(e) évoluera au sein du Laboratoire des Procédés Supercritiques et Décontamination (Marcoule), et bénéficiera de l’expertise du laboratoire dans les membranes céramiques. L’étudiant(e) interagira avec les techniciens, ingénieurs, doctorants et post-doctorants du laboratoire et échangera avec les collaborateurs du Laboratoire des Réacteurs et des Procédés (Grenoble). Le/la doctorant(e) sera impliqué(e) dans les différentes étapes du projet, la publication des résultats et la présentation de ses travaux dans des conférences. Il/Elle développera de solides connaissances dans les domaines de l’environnement et de l’énergie, ainsi qu’en gestion de projet.

Conditions systémiques pour le développement de l’industrie des batteries en Europe : politiques publiques, écosystème industriel et géoéconomie.

En tant que leader mondial de la neutralité carbone, l’Europe fonde son modèle de développement sur la transition énergétique et a développé des solutions technologiques décarbonées dans de nombreux domaines. Cependant, cette avance politique ne s’est pas toujours traduite par une compétitivité industrielle dans le marché mondialisé malgré des efforts en matière d’innovation. Un déclin industriel a été observé, laissant l’Europe en position de faiblesse sur les marchés internationaux.
L’objectif de neutralité carbone pris par l’Union européenne (UE) à l’horizon 2050 impose une profonde refondation du système énergétique qui mobilisera un ensemble de technologies posant des défis à la fois techniques, économiques mais aussi sociaux.
Les récents bouleversements géopolitiques, tels que les tensions commerciales ou la volatilité des chaînes d’approvisionnement, renforcent l’incertitude pesant sur la géoéconomie mondiale. Face à ces défis, les décideurs cherchent à élargir leur vision stratégique. L’UE a ainsi acté la nécessité d’une autonomie stratégique dans un monde fragmenté dans lequel l’accès à certaines ressources et certains équipements devient plus difficile et pourrait être devenir une arme géopolitique.
La maitrise des chaînes d'approvisionnement européennes afin d’assurer un accès stable à l’énergie et aux ressources critiques dans un contexte de compétition mondiale est dorénavant une priorité politique, qui passe notamment par l’installation de capacités productives des équipements bas-carbone sur le sol européen. L’ensemble de ces objectifs ne pourra être adressé qu’en articulant un ensemble large de mesures politiques, en trouvant un équilibre entre les politiques énergétique, environnementale et industrielle. Or, certaines mesures pourraient entrer en tension avec les politiques mises en œuvre ces dernières décennies pour construire le marché européen de l’énergie, mais aussi celles fondant les relations de commerce et d’investissement.
Dans ce contexte, cette thèse propose un cadre théorique permettant d’analyser les conditions systémiques du développement de l’industrie européenne des batteries, en intégrant les dimensions des politiques publiques, de la souveraineté industrielle et des enjeux géoéconomiques. Elle sera réalisée au sein du pôle Régulation et Organisation de Marchés de l’Énergie (ROME) de l'Institut de recherche et d'études en économie de l'énergie (I-Tésé) du CEA, en partenariat académique avec l’Université Paris Dauphine-PSL.

Top