Développement d’un dosimètre basé sur la capture de xénon dans une zéolithe

La dosimétrie en réacteur permet de caractériser le spectre neutronique et déterminer la fluence neutronique reçue pendant une irradiation pour le suivi de la fragilisation des matériaux. Cette technique s’appuie sur l’analyse de la radioactivité de dosimètres irradiés, constitués de métaux purs ou d’alliages de compositions connues dont certains isotopes sont l’objet de réactions d’activation ou de fission.
Il existe de nombreux dosimètres répondant en-dessous de 1 keV ou au-dessus de 2 MeV, quelques-uns entre 1 MeV et 2 MeV, mais le Zr est le seul adapté au domaine énergétique compris entre 1 keV et 1 MeV. En outre, peu de dosimètres répondent avec un seuil proche de 1 MeV.
Dans ce contexte, le Xe présente non seulement une réaction intéressante déjà identifiée entre 1 keV et 1 MeV, mais dispose aussi de deux réactions proches de 1 MeV produisant deux fils ayant des périodes d’une dizaine de jours bien adaptées au cycle d’irradiation du prochain réacteur expérimental à fort flux du CEA, le réacteur Jules Horowitz (RJH).
L’idée maitresse de ce sujet de thèse serait d’utiliser des matériaux adsorbants pour fixer une masse suffisante de Xe dans un volume réduit. Des zéolithes commerciales peuvent à présent piéger jusqu’à 30% en masse de Xe lorsque soumises à seulement 1 bar de Xe à température ambiante.
La thèse consistera à réaliser un dosimètre de Xe piégé sur une zéolithe au CNRS MADIREL (déplacements fréquents à prévoir sur le campus Saint Jérôme à Marseille durant la 1ère année) et une chambre gonflée au Xe via la fabrication sur les ateliers de notre laboratoire. L’irradiation conjointe d’un dosimètre et d’une chambre dans un réacteur tel que CABRI à Cadarache permettra d’évaluer les facteurs d’auto-absorption par la zéolithe des raies gamma émises par les isotopes d’intérêt, vérifier leur mesurabilité par la plate-forme MADERE de notre laboratoire, ainsi que le vieillissement des zéolithes sous forte irradiation neutronique. Le dosimètre sera ensuite testé à plus haut flux, par exemple dans le TRIGA du JSI (déplacement d’une semaine à prévoir en Slovénie), via la collaboration CEA-JSI ininterrompue depuis 2008, afin de qualifier ce dosimètre pour le RJH.
Fort de l’acquisition de compétences dans le domaine de la mesure nucléaire, le futur docteur pourra préparer son intégration professionnelle dans les grands organismes de recherche français et étrangers ou dans des entreprises du nucléaire.

Simuler l’altération du verre dans son environnement : développement d’un module autonome pour le couplage avec les codes de transport réactif.

Dans le cadre de l’utilisation durable et sûre de l’énergie nucléaire au sein d’un mix énergétique décarboné répondant à l’urgence climatique, la maîtrise de l’inventaire en déchets radioactifs est une question prioritaire. L’altération des verres nucléaires conditionne alors directement l’évaluation à long terme de la sûreté des stockages géologiques de ces déchets. Comprendre et simuler ces processus représente donc un enjeu scientifique, industriel et sociétal majeur. Les modèles existants, tels que GRAAL2 [1] développé par le CEA, permettent de simuler et prédire des mécanismes de passivation occurrents à l’échelle nanométrique transposés à l’échelle mésoscopique via des lois cinétiques mésoscopique utilisées dans les codes de transport réactif (CTR).
Cette thèse vise à développer un module verre (MV) autonome sur la base du modèle GRAAL2, capable de calculer, l’altération du verre et de s’interfacer avec différents CTR (HYTEC, CRUNCH…). Les objectifs principaux sont : (i) concevoir et implémenter le MV sur la base d’un module cinétique robuste, (ii) développer un coupleur assurant les échanges d’informations avec le CTR, (iii) définir et réaliser des campagnes de validation numérique sur des cas tests de référence pour le MV et le coupleur, et (iv) conduire des analyses de sensibilité et d’incertitude afin d’identifier les paramètres déterminants dans un contexte de modélisation multi-matériaux (verre, fer, argile).
La thèse se déroulera dans le Laboratoire de Modélisation des Transferts dans l’Environnement de l'Institut IRESNE (CEA, site de Cadarache, Saint Paul les Durance). Le sujet offrira à le ou la doctorante des compétences transverses en géochimie, couplage multiphysique et développement logiciel, ouvrant des débouchés tant dans la recherche académique que dans l’ingénierie nucléaire et environnementale.

Références :
[1] M. Delcroix, P. Frugier, E. Geiger, C. Noiriel, The GRAAL2 glass alteration model: initial qualification on a simple chemical system, Npj Mater Degrad 9 (2025) 38. https://doi.org/10.1038/s41529-025-00589-4.

Méthode primale-duale proximale pour l’estimation conjointe de l’objet et des paramètres d’acquisition inconnus en tomographie.

Dans le cadre de l’utilisation durable et sûre de l’énergie nucléaire au service de la transition énergétique décarbonée, le réacteur de recherche Jules Horowitz, en cours de construction sur le site du CEA Cadarache, est un outil-clé pour l’étude du comportement des matériaux sous irradiation. Une ligne d'imagerie tomographique est prévue en accompagnement des dispositifs expérimentaux afin d'obtenir l'image de la dégradation des échantillons en temps réel. Cette ligne présente des caractéristiques extraordinaires de par sa géométrie et la dimension des objets à caractériser. En conséquence, certains paramètres d'acquisition, indispensables pour la bonne reconstruction de l'image, ne sont pas connus avec précision. Ainsi, l'image finale peut se retrouver fortement dégradée.
L'objectif de cette thèse est de proposer des méthodes permettant l'estimation conjointe de l'objet caractérisé ainsi que des paramètres d'acquisition inconnus. Ces méthodes s'appuieront notamment sur les outils de l'optimisation convexe moderne. Cette thèse explorera également des méthodes de machine learning afin d'automatiser et d'optimiser le choix des hyperparamètres du problème.
La thèse sera réalisée en collaboration entre l'Institut de Mathématiques de Marseille (I2M CNRS UMR 7373, Aix-Marseille Université, site Saint Charles) et le laboratoire de Mesures Nucléaires de l’institut IRESNE du CEA (site de Cadarache, Saint Paul les Durance). Le ou la doctorant(e) évoluera dans un environnement de recherche stimulant en lien avec des problématiques stratégiques liées au contrôle non destructif. Il ou elle pourra également valoriser ses travaux de recherche en France comme à l'étranger.

Modélisation du flux critique à l’aide des méthodes de Boltzmann sur réseau : application aux dispositifs expérimentaux du RJH

Les méthodes LBM (Lattice Boltzmann Methods) sont des techniques numériques utilisées pour simuler des phénomènes de transport dans des systèmes complexes. Elles permettent de modéliser le comportement des fluides en termes de particules qui se déplacent sur une grille discrète (un "réseau" ou lattice). Contrairement aux méthodes classiques, qui résolvent directement les équations différentielles des fluides, les méthodes LBM simulent l'évolution des fonctions de distribution des particules de fluide dans un espace discret, en utilisant des règles de propagation et de collision.
Le choix du réseau dans les méthodes LBM est une étape cruciale, car il affecte directement la précision, l'efficacité et la stabilité des simulations. Le réseau détermine la manière dont les particules de fluide interagiront et se déplaceront dans l'espace, ainsi que la façon dont la discrétisation de l'espace et du temps est effectuée.
Les méthodes LBM présentent un parallélisme naturel, car les calculs à chaque point de la grille sont relativement indépendants. Les méthodes LBM par rapport aux méthodes CFD classiques permettent de mieux capturer certains phénomènes complexes (comme les écoulements multiphasiques, turbulents ou en milieux poreux) car elles reposent sur une modélisation mésoscopique du fluide, directement dérivée de la cinétique des particules, plutôt que sur une résolution macroscopique des équations de Navier–Stokes. Cette approche permet une représentation plus fine des interfaces, des effets non linéaires et des interactions locales, souvent difficiles à modéliser correctement avec les méthodes CFD classiques. Les méthodes LBM permettent donc, à moindre coût, de capturer des phénomènes complexes. Des travaux récents ont notamment montré qu'il était possible, avec les LBM, de retrouver la courbe de refroidissement de Nukiyama (ébullition en vase) et, ainsi, de calculer avec précision le flux critique. Ce flux correspond à une ébullition en masse, appelée crise d’ébullition, qui se traduit par une dégradation soudaine du transfert thermique.
Le flux critique représente un enjeu crucial pour les dispositifs expérimentaux (DEX) du Réacteur Jules Horowitz, car ils sont refroidis par de l'eau en convection naturelle (dispositifs de type fuel capsule) ou forcée (dispositifs de type boucle). Ainsi, afin de garantir le bon refroidissement des DEX et la sûreté du réacteur, il convient de s'assurer que, sur la gamme de paramètres étudiés, le flux critique ne soit pas atteint. Il doit donc être déterminé avec précision. Les études précédentes menées sur un DEX de type fuel-capsule à l’aide du code NEPTUNE-CFD (méthodes CFD classique) ont montré que la modélisation est limitée à une région située loin du flux critique. De façon générale, les écoulements à fort taux de vide (supérieurs à 10%) ne peuvent être résolues aisément par les approches classiques de la CFD.
L'étudiant sera amené, dans un premier temps, à définir un réseau pour appliquer les méthodes LBM sur un dispositif du RJH en convection naturelle. Il consolidera les résultats sur le flux critique obtenus sur cette configuration en les comparant aux données disponibles. Enfin, des calculs exploratoires en convection forcée (régime laminaire à turbulent) seront menés.
L’étudiant sera accueilli au sein de l’institut IRESNE.

Effet de la porosité sur la conductivité thermique du matériau combustible MOX (U,Pu)O2

La performance des combustibles nucléaires dépend fortement de leur comportement thermomécanique, et donc de leur conductivité thermique. Cette propriété varie avec la microstructure du matériau qui peut présenter des hauts niveaux de porosité, notamment dans le cas des oxydes mixtes d’uranium et de plutonium utilisés dans les réacteurs rapides.

Le but de cette thèse est d’évaluer l’effet de la quantité et de la forme des pores sur la conductivité thermique de ces matériaux fissiles et de proposer une loi de conductivité thermique pour les MOX prenant en compte la quantité, la taille, la forme et l’interconnectivité de leur porosité. Pour ce faire, des mesures récentes de propriétés thermiques sont en cours de réalisation par des techniques performantes de chauffage laser permettant d’appréhender le comportement du combustible dans des domaines de température peu explorés à ce jour, à savoir les très hautes températures (typiquement jusqu’à 2800°C), dans le centre de recherche européen (JRC) à Karlsruhe. Ces mesures sont réalisées sur des matériaux présentant des microstructures différentes et seront comparés à des résultats obtenus par simulation à cette échelle (analyse d'image, passage 2D/3D, TM-FFT) [1].
La thèse se déroulera sur le centre du CEA Cadarache au sein de l'Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) dans le Laboratoire d'Expertise et de Validation des Applications multi-filières (LEVA). Le LEVA fait partit du Service d'Etude et de Simulation du Combustible (SESC) et a pour mission de :
- Répondre aux besoins des partenaires industriels par des études ;
- Réaliser la validation des Outils de Calculs Scientifiques (OCS) de la plateforme PLEIADES ;
- Approfondir la compréhension du comportement combustible ;
- Gérer les bases de données combustibles.
Enfin, la collaboration avec JRC Karlsruhe sera l'opportunité de travailler dans un cadre international qui est une des forces du LEVA.

Ce travail permettra la valorisation des travaux de recherche lors de conférences et de publications dans des revues à comités de lecture. De plus, l'étudiant en thèse aura l'occasion d'acquérir ou de conforter certaines compétences techniques (interprétations de données expérimentales, modélisation) applicables à différents domaines de la science des matériaux et de l’ingénieur.
[1] Ce travail s'inscrit naturellement dans les perspectives évoquées dans la thèse "Thermal conductivity of mixed oxide fuel (MOX) : effect of temperature, elementary chemical composition, microstructure and burn-up in reactor" - TEL - Thèses en ligne.

Etude expérimentale du comportement des gaz de fission dans les combustibles des Réacteurs à Neutrons Rapides irradiés à basse puissance

Avec l’émergence des nouvelles start-ups dans le domaine du nucléaire, il est primordial d’étendre la base de validation des codes de performances du combustible des Réacteurs à Neutrons Rapides (RNR) à des régimes de fonctionnement à plus faible puissance linéique, un domaine encore peu exploré.
Compte tenu des températures plus faibles atteintes dans le combustible, la microstructure induite par l’irradiation est différente de ce qui est classiquement observée à plus forte puissance linéique. Ces plus faibles températures de fonctionnement entraînent aussi une diminution du relâchement des gaz de fission (RGF) pouvant induire un gonflement gazeux significatif du combustible. De manière concomitante, les faibles températures de fonctionnement peuvent aussi entraîner une augmentation de la densité des défauts générés (dislocations) lors de l’irradiation (efficacité de recuit des défauts plus faible) impliquant une augmentation indirecte du gonflement du combustible.
Il est donc important de déterminer la densité des dislocations dans le combustible car leur rôle ambivalent montre qu’elles peuvent ralentir le relâchement des gaz par piégeage et favoriser leur stockage dans des bulles en position intragranulaire, tout en pouvant aussi faciliter leur migration si elles forment un réseau connecté.
Afin d’améliorer la compréhension des phénomènes mis en jeu et les modèles de gonflement du combustible sous irradiation, il est essentiel de disposer de résultats expérimentaux comme les densités et les tailles de bulles de GF et les densités de dislocations dans ces régimes de fonctionnement.
Le laboratoire de caractérisation et d‘études des propriétés des combustibles au sein de Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone (IRESNE) auquel sera rattaché le doctorant est doté d’équipements de pointe dédiés aux matériaux irradiés (MET, MEB-FIB, SIMS, EPMA, DRX)lui permettant d’acquérir des compétences expérimentales pointues sur du combustible irradié. Ce travail sera réalisé en étroite collaboration avec les équipes en charge du développement des outils de calcul scientifique multiphysique de la plateforme logicielle PLEIADES.Les compétences acquises pendant toute la durée de la thèse pourront être valorisées dans un futur parcours professionnel aussi bien académique qu’industriel. Le doctorant pourra également valoriser son travail auprès de la communauté académique internationale et du monde industriel via des présentations orales et des articles à comité de lecture.

Modélisation et études dynamiques d’un système électronucléaire spatial pour la propulsion

La technologie nucléaire est clef pour permettre l’installation de bases scientifiques sur la Lune ou sur Mars, ou encore l’exploration de l’espace lointain. Son utilisation peut prendre plusieurs formes (par ex. Radioisotope Thermoelectric Generators, Nuclear Thermal Propulsion) et ce sujet de thèse s’intéresse à la Nuclear Electric Propulsion (NEP) : la chaleur produite par un réacteur nucléaire est convertie en électricité, afin d’alimenter un moteur de propulsion ionique. Différents concepts ont été étudiés par le passé (PROMETHEUS, MEGAHIT et DEMOCRITOS, typiquement pour des missions d’exploration des satellites de Jupiter) tandis qu’actuellement des études de conception sont en cours au CEA pour un système électronucléaire NEP de 100 kWe.
Le système d’intérêt combine plusieurs choix de conception très spécifiques : combustible en nitrure d’uranium, refroidissement direct au gaz (mélange hélium-xénon) et système de conversion d’énergie basé sur un cycle de Brayton, ou encore évacuation de la chaleur fatale par rayonnement thermique. Ces choix répondent à des exigences de masse et d’encombrement à minimiser, et de performance et de fiabilité à assurer pour la durée de la mission scientifique. L’analyse du comportement dynamique du système électronucléaire est donc cruciale pour la réussite du projet. Toutefois, la question de la modélisation transitoire d’un système électronucléaire spatial complet est très peu traitée dans l’état de l’art, et ce particulièrement pour la NEP.
Les objectifs de la thèse sont donc de rechercher et de développer des modélisations physiques adaptées à un système NEP, de proposer une démarche pour leur validation, et enfin de les mettre en œuvre pour analyser le comportement dynamique du réacteur et contribuer à l’amélioration de sa conception. On étudiera notamment plusieurs phases d’une mission : le démarrage du réacteur dans l’espace, les transitoires de variation de puissance fournie au moteur de propulsion ionique, la réponse du réacteur en cas d’avarie, et son arrêt éventuel avec la problématique d’évacuation sûre de la puissance résiduelle.
La thèse sera réalisée à l'Institut IRESNE (CEA Cadarache), dans un environnement scientifique stimulant, et intégrée dans une équipe de conception de réacteurs nucléaires innovants. Le CNES sera aussi impliqué dans le suivi des travaux, notamment pour définir les caractéristiques du moteur de propulsion ionique et les missions d’exploration d’intérêt pour le système électronucléaire. Le sujet de thèse, combinant modélisation, mécanique des fluides, thermodynamique, neutronique et mécanique spatiale, se prêtera à la communication scientifique et permettra de développer des compétences clefs pour une carrière académique ou dans l’industrie.

Imagerie acoustique des interfaces métal/céramique sur éléments combustibles irradiés : de la mise en œuvre à l’interprétation

Dans le contexte de l’amélioration de la performance et de la sureté des réacteurs nucléaires civils, de nombreux programmes de recherche sont conduits par le CEA en soutien aux industriels EDF et FRAMATOME, en particulier sur le comportement des éléments combustibles sous irradiation. Les éléments combustibles sont constitués d’une gaine métallique et de pastilles en céramique. Dans des situations de variations de puissance, la présence ou l’absence de jeu entre la gaine et les pastilles, et la qualité de l’accrochage entre eux en cas de contact, sont déterminants pour la tenue mécanique de l’élément (https://hal.archives-ouvertes.fr/DEN-DIR/cea-01153334v1).
Pour compléter les méthodes actuelles de caractérisations expérimentales, la faisabilité de la caractérisation de l’interface pastille-gaine par une technique non destructive d’imagerie acoustique a été étudiée et validée sur un banc d’essai en laboratoire universitaire.
Dans la continuité de cette première étude, l’objectif de la thèse est d’instrumenter un banc de mesure déjà opérationnel au CEA, dans une cellule blindée dédiée aux examens sur combustibles irradiés, pour y implanter une chaine d’imagerie acoustique.
Le travail de thèse inclut l’établissement et la mise en œuvre d’un protocole de qualification de la chaine de mesure avec acquisitions de mesures sur éléments combustibles irradiés. Une stratégie de traitement des signaux acoustiques prenant en compte la correction des effets en surface externe de gaine sera mise en place. Les caractéristiques que l’on souhaite obtenir sont la localisation axiale et azimutale des continuités ou discontinuités du contact à l’interface pastille-gaine avec des résolutions de quelques dizaines de micromètres, et la fraction surfacique des zones d’adhérence entre la gaine et le combustible, à l’échelle de quelques pastilles.
Le doctorant sera basé au sein de l’institut IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d’énergie bas carbone) au CEA Cadarache, et les travaux seront réalisés dans une installation disposant d’outils de caractérisation non destructive et destructive permettant d’observer le combustible irradié à toutes les échelles.
Ce travail pluridisciplinaire sera mené en en étroite collaboration avec une équipe de l’IES (Institut de l’Electronique et des Systèmes - CNRS - Montpellier), spécialisée dans la conception de capteurs acoustiques et de systèmes d’imagerie acoustique. En s’appuyant sur les moyens et l’expertise des équipes des deux entités CEA et IES, le doctorant ou la doctorante pourra acquérir de solides compétences dans les domaines de la modélisation, de l’instrumentation et de la mesure. Il ou elle sera amené(e) également à interagir avec les équipes de R&D d’EDF, partenaire industriel de ce projet. Les résultats seront valorisés dans des publications et communications internationales.

Marqueurs radiologiques en Antarctique : développement et validation des méthodologies d’analyse associées

Au sein de l’institut IRESNE (Institut de REcherche sur les Systèmes Nucléaires pour la production d'Energie bas carbone), situé sur le centre CEA-Cadarache, le doctorant participera au développement du Laboratoire d’Analyses Radiochimiques et Chimiques (LARC), qui apporte depuis plus de 60 ans son expertise et un soutien analytique dans les domaines des réacteurs, du combustible, des déchets, ainsi que de l’assainissement et du démantèlement. L’objectif principal de la thèse est le développement et l’optimisation de méthodes analytiques pour la détection de marqueurs radiologiques, en s’appuyant sur des collaborations internes (LANIE, LEXAN) et externes (CSIC, CIEMAT). Les analyses porteront notamment sur le 137Cs et le 210Pb par spectrométrie gamma, sur l’isotopie de l’uranium et du plutonium par MC-ICPMS, ainsi que sur l’indice alpha/bêta global par scintillation liquide. Dans un second temps, l’application de ces méthodes à des échantillons variés, notamment prélevés dans le cadre du projet GEOCHEM [1] en Antarctique permettra d’étudier la distribution spatiale et l’origine de ces marqueurs radiologiques[2]. A l’issue de cette thèse pluridisciplinaire, le doctorant aura acquis une solide expérience dans la mesure des rayonnement gamma, alpha et bêta. L’interprétation des données obtenues en lien avec les paramètres environnementaux contribuera également au développement de son esprit critique et de sa curiosité scientifique.

[1] Maestro, A. et al. Fracturation pattern and morphostructure of the Deception Island volcano, South Shetland Islands, Antarctica. Antarct. Sci. 37, 176–200 (2025).

[2] Xu-Yang, Y. et al. Radioactive contamination transported to Western Europe with Saharan dust. Sci. Adv. 11, eadr9192 (2025).

Tomographie électrique pour l’étude des écoulements diphasiques métal liquide/gaz

Dans le cadre de l'utilisation durable de l'énergie nucléaire dans le cadre d'un mix énergétique décarboné en association avec les énergies renouvelables, les réacteurs de IVe génération à neutrons rapides sont cruciaux pour la fermeture du cycle du combustible et la maîtrise de la ressource en uranium. La maîtrise de la sûreté d'un tel réacteur à caloporteur sodium repose notamment sur la détection précoce de vides gazeux dans les circuits. Dans ces milieux opaques et métalliques, les méthodes d’imagerie optiques sont inopérantes, d’où la nécessité de développer des techniques innovantes.
Cette thèse s'inscrit dans le développement de la tomographie d'impédance électrique (EIT) appliquée aux métaux liquides, une approche non intrusive permettant d'imager la distribution de conductivité dans un écoulement.
Les travaux porteront sur l’étude des phénomènes électromagnétiques dans les milieux diphasiques métal/gaz, en particulier l’effet de peau et les courants de Foucault produits par des champs oscillants.
Des approches d’intelligence artificielle, notamment les Physics-Informed Neural Networks (PINNs), seront explorées pour combiner apprentissage numérique et contraintes physiques et seront comparées à l’utilisation de simulations numériques.
L’objectif est d’établir des modèles physiques adaptés au contexte métallique et de concevoir des méthodes d’inversion robustes vis-à-vis des bruits de mesure.
Des essais sur galinstan permettront de valider les modèles et de démontrer la faisabilité de la détection d’inclusions gazeuses dans un métal liquide.
Ce travail conduit à l'institut IRESNE du CEA Cadarache,ouvrira de nouvelles perspectives d’imagerie électromagnétique pour les milieux opaques fortement conducteurs.

Top