Etude et simulation des entraînements de phase dans les batteries de mélangeurs-décanteurs

Dans le cadre du développement de nouveaux procédés de séparation par extraction liquide-liquide, des essais expérimentaux sont mis en œuvre afin de démontrer la récupération des éléments valorisables suffisamment décontaminés des impuretés. Ces essais sont couramment réalisés en batteries de mélangeurs décanteurs. Cependant, en fonction des conditions opératoires, ces produits finis peuvent être contaminés par des impuretés. Cette contamination résulte de la combinaison de plusieurs facteurs :
-Hydrodynamique : Entrainement dans le solvant de gouttes aqueuses non décantées contenant des impuretés
-Chimique : le facteur de séparation des impuretés est faible (inférieur à 10-3)
-Procédé : l’entrainement des gouttes est amplifié avec l’augmentation de la cadence (réduction du temps de séjour des gouttes)
Cette thèse a pour but d’accroitre la compréhension des différents phénomènes responsables de ces entraînements de phase afin d’estimer des paramètres opératoires optimaux et de garantir une contamination des produits finis inférieure à un seuil fixé.
Il sera question de mettre au point un modèle macroscopique permettant de prédire le débit d’entrainement de gouttes non décantées en fonction des conditions opératoires dans les batteries de mélangeurs décanteurs. Il devra s’appuyer sur des simulations hydrodynamiques couplant la résolution d’un bilan de population de gouttes à un écoulement de phase continue. Un couplage sera réalisé entre ce modèle hydrodynamique et le code PAREX ou PAREX+ permettant de dimensionner les schémas de procédé.
La qualification des modèles proposés devra être faite par des comparaisons à des mesures expérimentales (basées sur des compagnes d’essai antérieures ou à venir).

Modèle de microémulsion : Vers la prédiction des procédés d’extraction liquide-liquide

Cette thèse de modélisation multi-échelle a pour objectif de développer des approches théoriques et des outils numériques innovants pour révolutionner les procédés d’extraction des métaux stratégiques, comme l’extraction liquide-liquide dont les mécanismes sous-jacents restent encore mal compris. Pour répondre à ces enjeux, les phases solvants seront représentées par des microémulsions, grâce à une synergie d’approches de modélisations mésoscopiques et moléculaires.
Le volet mésoscopique reposera sur le développement d’un code basé sur la théorie des microémulsions utilisant une base d’ondelettes aléatoires. Ce code permettra de caractériser les propriétés structurales et thermodynamiques des solutions. L’approche moléculaire s’appuiera sur des simulations de dynamique moléculaire classique pour évaluer les propriétés de courbure des extractants nécessaires au passage entre les deux échelles.
Le nouveau code de calcul performant intégrera potentiellement des techniques d’intelligence artificielle pour accélérer la minimisation de l’énergie libre du système, tout en prenant en compte l’ensemble des espèces chimiques présentes avec un minimum de paramètres. Cela ouvrira la voie à de nouvelles pistes de recherche, notamment à travers la prédiction de la spéciation et le calcul des instabilités thermodynamiques dans les diagrammes de phase ternaires, permettant ainsi d’identifier des conditions expérimentales encore inexplorées.
Cette thèse, menée au Laboratoire de Modélisation Mésoscopique et Chimie Théorique à l’Institut de Chimie Séparative de Marcoule, aura des applications dans le domaine du recyclage, mais également dans le domaine des nanosciences, élargissant ainsi l’impact de ces travaux.
Le/La doctorant(e), de formation initiale en chimie-physique, chimie théorique ou physique, et ayant un fort intérêt pour la programmation, sera encouragé(e) à valoriser ses résultats scientifiques par des publications et des communications lors de conférences nationales et internationales. A l’issue de la thèse, le/la candidat(e) aura acquis un large éventail de compétences en modélisation et en chimie-physique, lui offrant de nombreuses opportunités professionnelles, tant en recherche académique qu’en R&D industrielle.

Etude la séparation des isotopes du lithium par laser

Cette thèse concerne l’étude de différentes voies de séparation des isotopes du lithium par laser. Les travaux seront menés à la fois théoriquement et expérimentalement. L’objectif est de déterminer une voie optimale ainsi que ses performances. On vise à obtenir un facteur de séparation isotopique supérieur à 100, alors que les procédés actuels possèdent des facteurs tout juste supérieurs à 1.
Méthodologie et déroulement de la thèse : La thèse se déclinera en 4 axes de recherches.
1-Les schémas de photo-ionisation déjà publiés seront tout d’abord analysés et de nouvelles séquences prometteuses seront recherchées. Ensuite il s’agira de recueillir les données spectroscopiques correspondantes, les données sur les lasers concernés et celles sur le régime d’interaction. Elles devront être analysées, compilées et assemblées. Ceci servira de base pour construire un modèle décrivant l’interaction laser-atome.
2-Des schémas de photo-ionisation prometteurs seront testés expérimentalement et les performances seront mesurées. Un banc d’essai (comprenant des moyens de vaporisation du lithium, des lasers et un spectromètre de masse à temps de vol) sera assemblé puis utilisé à cette fin.
3-Le rendement de séparation sera modélisé, avec un modèle de type mécanique quantique via l’évolution temporelle de la matrice densité par exemple, et l’efficacité en fonction des lasers disponibles sera ensuite examinée.
4-Les résultats expérimentaux seront comparés à ceux obtenus par modélisation afin de déterminer les performances optimales à attendre et leur extrapolation.
Les travaux pourront être publiés dans des conférences et des revues scientifiques après accord du CEA.

Influence du dopage au chrome du combustible UO2 sur la spéciation des produits de fission en conditions accidentelles

Le développement des réacteurs nucléaires s’inscrit dans une démarche d’amélioration de la sûreté, avec par exemple le déploiement de combustibles nucléaires à propriétés améliorées vis-à-vis de leur comportement en conditions accidentelles : les combustibles nucléaires dits E-ATF (Enhanced Accident Tolerant Fuel). Parmi les combustibles E-ATF envisagés, le combustible UO2 dopé avec Cr2O3 est développé par l’opérateur industriel FRAMATOME. En revanche, très peu de données existent sur le comportement des produits de fission d’un combustible dopé Cr en conditions accidentelles.
La thèse propose de mettre au point un procédé de synthèse d’un combustible UO2 dopé Cr simulant le combustible irradié pour étudier le comportement des éléments (Cr et produits de fission) en température et sous différentes pressions partielles d’oxygène. La méthodologie repose sur une approche expérimentale couplant synthèse de matériaux modèles et caractérisation chimique approfondie, complétée par une approche théorique (calculs thermodynamiques) permettant de dimensionner les séquences thermiques et conforter les mécanismes réactionnels proposés.
La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.

La thèse sera réalisée au CEA de Cadarache (France), au sein de l’IRESNE (Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone). Le(La) doctorant(e) sera accueilli(e) dans un laboratoire dédié à l’étude des composés à base d’uranium du Département d’étude des combustibles (DEC). Selon les procédés de densification choisis, des expériences de plus ou moins longue durée pourront être menées dans d’autres laboratoires en France ou en Europe.
Le doctorant aura l’opportunité de se former à des techniques pointues de caractérisation des sciences des matériaux céramiques, d’accéder à des expériences sur grands instruments (synchrotron) et de participer à des échanges avec le monde académique (CNRS, Universités, JRC). Il pourra valoriser ses travaux à travers des publications et des participations à congrès.
A l’issue de cette thèse, le doctorant aura acquis des compétences en science des matériaux et en caractérisation du solide qu’il pourra mettre à profit dans différents domaines des matériaux, ainsi qu’une expérience dans le milieu nucléaire d’intérêt pour l’industrie nucléaire.

Etude phénoménologique des effets couplés iode/oxygène sur la Corrosion Sous Contrainte induite par l’Iode (CSC-I) des alliages de zirconium

Le cœur des Réacteurs à Eau Pressurisée (REP) des centrales nucléaires est constitué d’assemblages combustibles, dont la gaine, première barrière de confinement du combustible, fait partie. L’Interaction Pastille-Gaine (IPG) consiste en une variation de puissance locale qui se traduit par la dilatation des pastilles combustibles qui imposent une déformation à la gaine. Le couplage du chargement mécanique imposé à la gaine et de l’environnement agressif, dû notamment à la présence d’iode issu de la réaction de fission, engendre un risque de fissuration de la gaine par Corrosion Sous Contrainte par l’Iode (CSC-I).
L’environnement chimique REP est à l’étude au Département d’Etude du Combustible (DEC). Il apparaît que les interactions entre la gaine et son environnement chimique REP résultent d’une compétition entre le zirconium, des gaz corrosifs tels que l’iode (I), l’iodure de tellure (TeI2) et l’oxygène (O2).
Ce sujet de thèse s’inscrit dans une démarche d’étude expérimentale de la CSC-I, dans des conditions mécaniques et chimiques aussi proches que possible des conditions vues par la gaine en REP.
Le travail de thèse s’articulera autour de trois axes principaux. Le premier axe permettra d’étudier l’influence de la contrainte, en fonction de la pO2 et de la pI2 sur la sensibilité à la CSC-I d’éprouvettes en alliage de zirconium. Les essais seront réalisés à l’aide des dispositifs d’essais existants au laboratoire (traction sur C-RING en iode vapeur, essais de pression interne en iode vapeur). Ce point sera accompagné de la modélisation de la CSC-I des alliages de zirconium. Le deuxième axe principal permettra d’étudier l’effet de la température sur la CSC-I à l’aide de ces mêmes dispositifs d’essais. Enfin, le troisième axe devrait permettre d’étudier l’effet sur la CSC-I, d’une zircone épaisse (de quelques microns d’épaisseur) située en paroi interne de gaine.

Développement d’un jumeau numérique d’un équipement industriel : couplage chimie / thermo-hydraulique / corrosion

Ce sujet de thèse s’inscrit dans le cadre de la R&D CEA visant à développer et améliorer les technologies décarbonées pour la production d’énergie, en réponse aux enjeux climatiques. Plus précisément, il s’intègre dans l’étape de traitement-recyclage du combustible utilisé dans les réacteurs nucléaires actuels. La simulation du fonctionnement et du vieillissement de ces équipements est un enjeu majeur pour la pérennisation des activités des usines de traitement-recyclage.
L’objectif de la thèse est de répondre à ces enjeux, en développant une modélisation de la corrosion d’un équipement ou plusieurs équipements des usines en se basant sur leur fonctionnement. Cela nécessitera de coupler des modèles de réactions chimiques (en solution et de corrosion) avec des modèles de thermo-hydraulique. Ces développements seront réalisés à l’aide d’outils de modélisation développés par le CEA.
En permettant de simuler la corrosion de l’équipement, le développement d’un tel modèle permettra d’optimiser sa durée de vie (en cherchant à optimiser son fonctionnement, par exemple) ou d’estimer avec précision (et donc d’anticiper) le moment nécessaire à son remplacement.

Développement d’un système miniaturisé et automatisé pour l’analyse isotopique d’échantillons nucléaires

La miniaturisation, qui consiste à réduire les dimensions d’un objet, d’une méthode ou d’une fonction tout en conservant ou en améliorant ses performances par rapport à une échelle classique, a un intérêt spécifique dans le domaine de la chimie analytique pour le nucléaire. En effet, une part importante des analyses sont effectuées dans des boîtes à gants où la miniaturisation et l’automatisation sont une réponse directe au besoin de diminution des doses et des volumes d’effluents. La thèse proposée consiste ainsi à développer un système miniaturisé et automatisé, en boîte à gants, pour réaliser des analyses isotopiques de haute précision. Ce système sera basé sur l’utilisation de l’électrophorèse capillaire (CE) en couplage avec un ICP-MS à multicollection (MC-ICP-MS) nucléarisé. Durant la thèse, l’étudiant(e) utilisera des machines de micro-usinage et d’impression 3D pour développer un système aisément manipulable qui sera ensuite couplé à des MC-ICP-MS de dernière génération du laboratoire. Le travail consistera à concevoir le montage automatisé et à l’intégrer en boîte à gants, puis à poursuivre le développement de la méthode de séparation par CE pour la réalisation d’analyses isotopiques et élémentaires sur des échantillons nucléaires. Cette thèse sera réalisée dans un laboratoire reconnu internationalement pour ses compétences en analyses isotopiques de haute précision. Un cursus en chimie analytique est requis et un stage Master 2 est proposé en amont.

Comportement redox du technetium dans le procédé innovant PUMAS: étude cinétique et spéciation

Le technétium (Tc), élément radioactif artificiel, constitue environ 6 % des produits de fission dans le combustible nucléaire usé. Le procédé PUREX permet de séparer l’uranium et le plutonium des autres produits de fission. Cependant, le Tc est co-extrait avec ces actinides, nécessitant une désextraction supplémentaire. Lors de cette étape, un agent stabilisant, le nitrate d’hydrazinium (NH), est utilisé, mais en raison de sa toxicité et de sa classification CMR, il est en cours de remplacement par des alternatives moins toxiques, telles que les oximes. Ces dernières, bien que prometteuses, présentent une cinétique de désextraction plus lente que le NH. Dans le cadre du procédé PUMAS, cette thèse vise à comprendre les mécanismes redox complexes du Tc et les différences de cinétique observées entre les oximes et le NH. Le doctorant étudiera les formes réduites du Tc et analysera les cinétiques de réduction en présence d’U(IV) et d’agents anti-nitreux. Il développera une méthodologie pour caractériser les états d'oxydation du Tc et déterminera les constantes de réaction en fonction de la température et de la concentration en réactifs.
Le candidat travaillera en étroite collaboration avec l’équipe encadrante afin de développer son autonomie, sa capacité d’adaptation, ainsi que son aptitude à proposer des idées innovantes. À l'issue de ce parcours, le candidat aura non seulement acquis des compétences techniques de haut niveau, mais aussi développé des aptitudes en gestion de projet, en travail collaboratif, ainsi qu’en rédaction et communication scientifique. Ces compétences lui offriront de solides perspectives pour une carrière dans la recherche académique ou au sein de l'industrie.

Simulation par Dynamique Moléculaire du Plutonium(IV) en Solution

Avec la relance du nucléaire en France, le CEA joue un rôle clé dans l’industrie nucléaire de demain. Dans ce contexte, ingénieurs et chercheurs sont mobilisés pour répondre aux besoins croissants de cette industrie. Le plutonium est un élément clé dans le cycle du combustible nucléaire. L'acquisition de données moléculaires est cruciale pour optimiser et rationaliser les mécanismes ayant lieu lors des séparations de cet élément.
Le plutonium(IV) est l’une des formes cationiques les plus courantes dans le cycle du combustible nucléaire. Son étude par chimie théorique présente des difficultés tant sur la modélisation ab initio (orbitales du bloc f occupées) que sur les simulations atomistiques classiques. Dans la simulation par dynamique moléculaire classique, les modèles nécessitent impérativement l’ajout de l’effet de polarisation, et parfois même de l’ajout du transfert de charge afin de reproduire correctement le comportement du système. Ceci résulte en une absence quasi-totale, dans la littérature scientifique, des simulations classiques contenant du plutonium (IV). De plus, la spéciation de ce cation étant sensible à l’acidité dans le milieu, cette dernière doit être prise en compte dans les simulations, rajoutant ainsi une difficulté supplémentaire.
Cette thèse vise à simuler, par dynamique moléculaire (classique et ab initio), des solutions contenant du plutonium, tout en tenant compte de l'effet de l'acidité. Le/la doctorant.e sera confronté.e à deux problématiques principales : le choix ou développement d’un champ de force pour le cation Pu4+, et, la conception d’une méthode permettant d’inclure l’acidité dans les solutions. Une étape cruciale de la démarche consistera à confronter les résultats aux données expérimentales disponibles afin de conclure sur la capacité des modèles à reproduire des données expérimentales. Cette thèse se déroulera au sein d'un laboratoire pluridisciplinaire, combinant chimie expérimentale et modélisation théorique, tout en menant des recherches à la fois appliquées et fondamentales.

Rupture fragile d’aciers faiblement alliés : sensibilité des zones mésoségrégées aux conditions de trempe et revenu

Les enceintes sous pression du circuit primaire des centrales nucléaires françaises sont élaborées par assemblage de composants en aciers faiblement alliés, mis en forme à partir de lingots de fort tonnage (> 100t) dont la solidification s’opère de manière non-uniforme. La forte épaisseur des pièces conduit par ailleurs à ce que les évolutions de température lors des traitements thermiques post-forgeage varient significativement en fonction de la position dans l’épaisseur de la pièce. Ces deux effets concourent à produire des microstructures hétérogènes qui peuvent fragiliser sensiblement le matériau.
L’objectif scientifique de cette thèse est d’évaluer quels éléments au sein de la microstructure sont responsable, et dans quelle proportion, d’une fragilisation accrue du matériau pour certaines conditions défavorables de traitements thermiques. Inversement, mieux cerner le domaine de conditions de traitements thermiques pour lequel cette fragilisation du matériau reste contenue, pour une microstructure initiale donnée, est un objectif à fort enjeu industriel.
Plusieurs traitements thermiques ont déjà été appliqués à des coupons issus d’une pièce industrielle rebutée avant de les solliciter en flexion par choc, dans le domaine de la transition ductile fragile du matériau. Des essais mécaniques instrumentés seront menés ainsi que des analyses fractographiques et microstructurales de pointe afin d’identifier l’évolution de la nature des sites d’amorçage en fonction des conditions de traitement thermique. Ces éléments seront alors intégrés dans un modèle d’approche locale de la rupture développé spécifiquement pour rendre compte des effets de variations microstructurales sur la résistance à la rupture fragile des aciers faiblement alliés.

Top