Impact de la nanostructure du solvant sur la précipitation de l'uranium : approche physico-chimique pour le recyclage nucléaire
Le recyclage des combustibles nucléaires est un enjeu majeur pour garantir un avenir énergétique durable. Le CEA, en partenariat avec Orano et EDF, développe depuis plusieurs années un nouveau procédé de séparation des combustibles riches en plutonium. L’objectif est de remplacer le système actuel TBP/TPH par un procédé sans rédox, plus adapté au retraitement du MOX ou des réacteurs à neutrons rapides (RNR).
Dans ce cadre, cette thèse propose d’étudier le comportement des solvants organiques chargés en uranium pour comprendre et prévenir la formation de précipités, un phénomène qui pourrait impacter la performance des procédés industriels. L’approche scientifique se focalisera sur l’échelle supramoléculaire et sur une comparaison de différents monoamides pour évaluer l’effet des chaînes alkyles sur les propriétés physicochimiques et la nanostructure des solutions.
Le candidat devra avoir un niveau Master 2 en chimie, physicochimie ou matériaux. Des compétences en chimie analytique, spectroscopies (RMN, FTIR), et techniques de diffusion (SANS, SAXS) seront fortement valorisées. En rejoignant ce projet, intégrerez les laboratoires de pointe du CEA (ICSM/LTSM et DMRC/SPTC/LILA), dotés d'équipements de classe mondiale pour les études sur des échantillons radioactifs. Vous bénéficierez d'un encadrement multidisciplinaire, incluant la possibilité de collaborations internationales. Cette thèse représente un défi scientifique majeur avec des applications industrielles directes, vous offrant une expérience précieuse dans le domaine de la séparation et des procédés de l’industrie nucléaire.
Méthodes Monte-Carlo pour la sensibilité aux paramètres géométriques en physique des réacteurs
La méthode Monte-Carlo est considérée comme l'approche la plus précise pour simuler le transport de neutrons dans le cœur d'un réacteur, puisqu’elle ne nécessite pas ou très peu d'approximations et peut facilement traiter des formes géométriques complexes (aucune discrétisation n'est impliquée). Un défi particulier pour la simulation Monte-Carlo dans les applications de la physique des réacteurs est de calculer l'impact d'un petit changement de modèle sur ses paramètres : formellement, il s'agit de calculer la dérivée d'une observable par rapport à un paramètre donné. Dans un code Monte-Carlo, l'incertitude statistique est considérablement amplifiée lors du calcul d'une différence de valeurs similaires. Par conséquent, plusieurs techniques Monte-Carlo ont été développées afin d’estimer des perturbations directement. Toutefois, la question du calcul des perturbations induites par un changement dans la géométrie du réacteur reste fondamentalement un problème ouvert. L'objectif de cette thèse est d'étudier les avantages et les failles des méthodes de perturbation géométrique existantes et de proposer de nouvelles voies pour calculer les dérivées des paramètres du réacteur par rapport aux changements de sa géométrie. Le défi est double. Premièrement, il faudra concevoir des algorithmes pouvant calculer efficacement la perturbation géométrique elle-même. Deuxièmement, les approches proposées devront être adaptées aux architectures informatiques de la simulation à haute performance(HPC).
Calcul des sensibilités en neutronique déterministe : développement des méthodologies pour l'étape réseau.
En neutronique, les calculs déterministes reposent généralement sur une approche en deux étapes, appelées étapes réseau et étape cœur. Dans la première, les sections efficaces multi-groupes sont réduites (condensées sur quelques groupes d'énergie et homogénéisées sur des régions de la taille d'un assemblage) en utilisant un petit sous-ensemble du modèle géométrique du système (typiquement, un seul sous-assemblage représentatif d'un modèle répété) afin de réduire la dimensionnalité de l'étape du calcul cœur. Lorsque ces ensembles réduits de sections efficaces sont utilisés pour les analyses de sensibilité du calcul cœur, l'impact de l'étape réseau est généralement négligé. Pour certaines quantités d'intérêt, cela peut conduire à des écarts importants entre les sensibilités calculées et les sensibilités réelles, étant donné que les calculs de transport sur réseau sont essentiels pour véhiculer les informations sur le spectre neutronique local à énergie fine et les effets d'autoprotection des résonances. Il peut y avoir un problème supplémentaire lorsque ces calculs de sensibilité sont utilisés pour fournir un retour d'information sur les évaluations des données nucléaires, ou dans le cas d'études de similitude. Pour résoudre ce problème, plusieurs approches sont disponibles, telles que les calculs directs ou les études de théorie des perturbations, chacune représentant des compromis différents en termes de coût ou de complexité.
L’objectif de cette thèse est par conséquent d’explorer l’état de l’art du domaine, à partir depuis les approches basées sur la force brute jusqu’à celles utilisant la théorie des perturbations avec la possibilité d’en proposer des nouvelles. L’implémentation des méthodes retenu dans des codes de nouvelle génération (comme APOLLO3) permettra enfin d’améliorer la précision des études de sensibilité.
Le doctorant sera basé dans l’unité de recherche en physique des réacteurs du CEA/IRESNE à Cadarache, qui accueille de nombreux étudiants et stagiaires. Les perspectives post-diplôme incluent la recherche dans les laboratoires de R&D nucléaire et dans l'industrie.
Influence de la perte de précurseurs de neutrons retardés par évacuation des gaz de fission sur la dynamique des réacteurs à sels fondus
Depuis une vingtaine d’années, les réacteurs nucléaires à sels fondus (molten salt reactor, MSR) connaissent un fort regain d’intérêt dans la communauté nucléaire internationale (programmes nationaux, start-ups dont une émanant du CEA). Les concepts modernes de MSR présentent un système d’évacuation des gaz de fission, qui s’accumulent dans le ciel de pile. Certains de ces gaz seront constitués de radionucléides précurseurs de neutrons retardés, qui seront donc perdus pour la réaction en chaîne. Ceci devrait réduire la fraction effective de neutrons retardés de ces réacteurs, déjà réduite par la circulation du sel hors de la zone critique. L’objectif de la thèse est d’évaluer l’ampleur de cette réduction additionnelle, et son influence sur la dynamique des réacteurs.
Une telle évaluation peut passer par des simulations numériques prenant en compte 1) une différenciation des groupes de précurseurs de neutrons retardés en groupes « phase liquide » et groupes « phase gazeuse » et 2) des modèles d’écoulement diphasique (où chaque type de groupe rejoint la phase qui lui correspond). La différenciation des groupes requiert une évaluation des fractions « liquide » et « gazeuse » pour chacun d’entre eux, par exemple à partir des rapports de branchement des évaluations nucléaires et la connaissance des éléments chimiques rejoignant chacune des phases. Celle-ci faite, on pourra mener des simulations avec le code « système » CATHARE (permettant déjà d’utiliser des modèles diphasiques) et le code « cœur » TRUST-NK (dont les fonctionnalités de calcul diphasique pourront nécessiter des développements) pour évaluer l’influence de la perte de précurseurs sur la dynamique des réacteurs.
Méthodologie de déploiement d'une flotte de réacteurs nucléaires innovants pilotée par les besoins et contraintes du réseau
Les réseaux électriques sont à une société ce que le système sanguin est au corps humain : les pourvoyeurs d’énergie électrique indispensable à la vie quotidienne de tous les organes de la société. Il s’agit de systèmes très complexes qui doivent garantir à tout instant l’équilibre entre la demande des consommateurs et la puissance injectée sur ses lignes via des mécanismes à des échelles spatiales et temporelles différentes.
Cette thèse vise à élaborer une méthodologie d’optimisation du déploiement de réacteurs nucléaires innovants dans des réseaux électriques, adaptée aux besoins et contraintes spécifiques de ceux-ci. Cette approche devra être applicable à une grande variété de réseaux, qu'ils soient insulaires ou de taille continentale, et à divers niveaux de pénétration et technologies d’Energies Renouvelables Intermittentes (EnRI). Les contraintes des réseaux devront traduire leurs besoins en stabilité à court terme (localisation et capacités des réserves inertielles, participation aux services systèmes), à moyen terme (pilotabilité et suivi de charge), ainsi qu’à long terme (disponibilité saisonnière et facteur de charge des moyens de production). Les réacteurs nucléaires innovants pourront appartenir à n’importe quelle filière, étant caractérisés uniquement par des grandeurs macroscopiques telles que la cinétique de montée/descente en charge, les paliers de puissance partielle, la durée avant redémarrage, les capacités de cogénération, etc. ainsi que des données technico-économiques requises pour le dispatching. Concrètement, l’objectif est de pouvoir dresser le portrait-robot (ie. localisation, puissance, cinétique) de flottes de réacteurs nucléaires garantissant un fonctionnement stabilisé des réseaux électriques malgré un fort taux de pénétration d’EnRI. Deux contributions principales sont attendues :
- Apport académique : proposer une méthodologie novatrice pour optimiser le déploiement de systèmes énergétiques de grande dimension comprenant des réacteurs nucléaires innovants, en intégrant à la fois la physique des réseaux électriques et leurs contraintes opérationnelles ;
- Apport industriel : développer des recommandations pour le déploiement optimal de réacteurs nucléaires innovants dans des systèmes électriques intégrant des EnRI, prenant en compte des aspects comme la puissance des réacteurs et leur inertie, leur localisation, les besoins en réserves pour les services systèmes, leur capacité de suivi de charge ou leur disponibilité.
Le doctorant sera basé dans une unité de recherche sur les systèmes nucléaires innovants. À l'intersection de l’étude de la dynamique des réacteurs nucléaires, de la physique des réseaux électriques, et de l'optimisation, cette thèse en énergétique offrira au doctorant l'opportunité de développer une connaissance approfondie sur les systèmes énergétiques de demain et les enjeux qui leur sont associés.
Développement d’une méthode de propagation d’incertitudes de type fonctionnel sur la puissance résiduelle
La puissance résiduelle est l’énergie dégagée par la désintégration des radionucléides présents dans le cœur d’un réacteur à l’arrêt. Une connaissance précise de sa valeur moyenne et de sa plage de variations revêt un aspect important pour le design et la sûreté des systèmes de transport et d’entreposage du combustible. Ces informations ne pouvant être mesurées de manière exhaustive, on utilise des outils de simulation numérique pour estimer la valeur nominale de la puissance résiduelle et quantifier ses variations dues aux incertitudes sur les données nucléaires.
Dans cette thèse, on se propose de quantifier les variations de la puissance résiduelle induite par les données de fonctionnement du réacteur, notamment les historiques de puissance, soit la puissance instantanée des assemblages de combustible lors de leur séjour en cœur. Ce travail revêt un challenge particulier puisque les données d’entrée ici ne sont plus des grandeurs scalaires mais des fonctions dépendant du temps. Pour cela, un modèle de substitution de l’outil de calcul scientifique sera développé afin de réduire le temps de calcul. La modélisation globale du problème sera réalisée dans un cadre bayésien à l’aide d’approches de réduction de modèle associées à des méthodes multifidélité. L’inférence bayésienne permettra in fine de résoudre un problème inverse pour quantifier les incertitudes induites par les historiques de puissance.
Le doctorant intègrera l’équipe du Laboratoire des Projets Nucléaires de l’institut IRESNE du CEA Cadarache. Il développera des compétences en simulation neutronique, science des données et réacteurs nucléaires. Il sera amené à présenter ses travaux périodiquement et les publiera dans des revues à comité de lecture.
Dégradation radiolytique des N,N-dialkyl amides : Impact sur la spéciation des complexes
Les N,N-dialkylamides (ou monoamides) sont des molécules extractantes prometteuses pour le développement de nouveaux procédés de traitement des combustibles nucléaires usés. Lors de la mise en œuvre de ces procédés d’extraction liquide-liquide, ces molécules sont soumises aux phénomènes de radiolyse induits par la présence des rayonnements ionisants émis par les radioéléments. Cela entraine la formation d’espèces radicalaires ou moléculaires susceptibles de provoquer des ruptures ou modifications de liaisons chimiques conduisant à la formation de nouveaux composés. Ces changements dans la composition des solutions peuvent altérer les propriétés extractantes et provoquer des dysfonctionnements, notamment en termes d’efficacité et de sélectivité.
Cette thèse a pour but d’étudier l’impact de la radiolyse sur la spéciation des complexes actinides-ligands en solution afin d’améliorer la compréhension des phénomènes observés sous l’effet des rayonnements ionisants.
Nous proposons ici une approche combinant des études expérimentales (techniques chromatographiques, spectrométrie de masse, spectroscopies UV-visible, IR, RMN,…) et des calculs de chimie théorique (énergie de dissociation des liaisons, identification des sites probable d’attaques radicalaires, stabilité des complexes métal-ligands,…) pour décrire la spéciation moléculaire des espèces en solution, à la fois pour les composés organiques et pour les complexes formés entre ces composés et les cations métalliques d’intérêt. La sphère de coordination des cations métalliques engagés dans les complexes sera décrite le plus finement possible pour identifier les groupements fonctionnels impliqués dans la complexation et évaluer les modifications induites par l’effet des rayonnements.
Génération de micro-particules de césium silicaté de Fukushima
Microscopiques de par leur taille, mais grandes de par leur impact environnemental, les microparticules de césium détiennent une des clés de la compréhension de l’accident nucléaire de Fukushima. Suite à l'accident de Fukushima Daiichi, ces microparticules de verre silicaté riches en césium (MSC) ont été découvertes dans l'environnement, portant une part significative de la radioactivité. Très peu solubles dans l'eau, elles diffèrent de celles observées à Tchernobyl. Une thèse précédente a démontré que ces MSC pourraient être issues de l'interaction entre le corium et le béton lors d'un accident grave, via des expériences à petite échelle. L'étude a permis de reproduire des particules similaires, constituées de silice amorphe avec des nano-inclusions cristallines. Toutefois, les résultats doivent être affinés, notamment en ce qui concerne la présence de zinc et de calcium. La thèse proposée vise à explorer les mécanismes physico-chimiques menant à la synthèse de ces MSC. Des expériences en laboratoire recréeront les conditions d'interaction corium-béton, représentatives de Fukushima, afin d'optimiser les compositions et d'améliorer la modélisation des relâchements de ces particules dans les outils actuels d'évaluation des accidents graves.
Développement d’une approche de corrélation d’images multiéchelle et multivue pour le suivi d’essais dynamiques à grande-échelle
Les données expérimentales obtenues sur des spécimens à grande échelle jouent un rôle important pour l’étude de l’intégrité des structures. Les interprétations fines de ces essais nécessitent une instrumentation poussée des maquettes. En plus des systèmes d'acquisition de données classiques, les techniques de corrélation d'images numériques (CIN) permettent de mesurer les champs de déplacement et d'extraire des quantités d'intérêt (par exemple, champ d’endommagement). L’objectif de cette thèse est de développer une technique de corrélation d’images numériques multivue et multiéchelle (CI2M) pour le suivi des essais dynamique à grande-échelle. Nous nous concentrerons sur le comportement des structures en béton armé soumises à des chargements dynamiques. La technique de recalage de modèles par éléments finis (FEMU) sera utilisée pour identifier les phénomènes non linéaires dans la zone de process autour des fissures. La FEMU sera couplée aux analyses de CI2M, ce qui permet également de mesurer les conditions aux limites. L'utilisation des techniques de CI pour calculer les champs d'accélération sera également étudiée. Un cadre numérique sera proposé pour effectuer une analyse modale basée sur des champs calculés. A terme, ces outils pourront être intégrés dans une procédure de dialogue essais / calculs en apportant des information précises sur les propriétés mécaniques des éléments structuraux et leur évolution (p.ex., endommagement) induite par des chargements sismiques.
Etudes expérimentales et théoriques de la génération du moment angulaire nucléaire et de l’énergie d’excitation des fragments de fission
La découverte de la fission en 1939 a profondément modifié notre connaissance de la physique nucléaire. Cette réaction permet de diviser des noyaux lourds comme l'uranium 235, en deux noyaux (fragments) plus légers, tout en libérant une grande quantité d'énergie. Les travaux de recherche sur la fission prennent la forme de modèles nucléaires servant à produire des bases de données nucléaires, qui sont essentiels pour simuler les réacteurs nucléaires. La qualité de ces données est encore insuffisante aujourd’hui, car notre compréhension fine de la fission reste très fragmentaire.
Ce travail de thèse vise à mieux décrire la génération du moment angulaire et l'énergie d'excitation des fragments de fission d’un point de vue expérimental et théorique. Ces recherches permettront à la fois de mieux comprendre le processus sous-jacent et d’améliorer le pouvoir de prédiction des outils de simulations, notamment les modèles utilisés pour calculer les échauffements gamma au sein d’un réacteur. Une partie du travail du doctorant consistera en l’exploitation des données acquises durant une thèse récente. Une autre partie sera la participation à des campagnes expérimentales complémentaires auprès du réacteur nucléaire de l’Institut Laue-Langevin (ILL), à l’aide du spectromètre LOHENGRIN afin de mesurer les rapports isomériques et les distributions en énergie cinétique des fragments de fission.
Le doctorant sera positionné au sein d’un laboratoire de physique nucléaire et de physique des réacteurs. Il développera des compétences en analyse de données, en physique nucléaire ainsi qu’en programmation informatique. Les langages utilisés seront C++ et python. Les débouchés sont la recherche en milieu académique ou industriel, également des postes de Data Scientist.