Implémentation de la QRPA covariante pour décrire les noyaux atomiques déformés

Toutes choses étant égales par ailleurs, quelles différences peut-on attendre du choix d’une interaction relativiste ou non dans la description QRPA des états excités du noyau atomique ? Afin de répondre à cette question l’étudiant(e) disposera d’une part d’outils numériques permettant de résoudre pour une interaction non-relativiste les équations QRPA de façon matricielle et d’autre part d’un solveur utilisant la méthode des amplitudes finies pour produire des fonctions de réponse QRPA avec des interactions relativistes.
Ces outils numériques sont performants sur super-calculateurs et largement exploités aussi bien pour répondre à des problématiques de données nucléaires et d’astrophysique que pour mener des études de structure nucléaire académiques. L’extension relativiste du solveur QRPA matriciel permettra de transférer toute l’expertise de production des données nucléaires au cas des interactions issues de lagrangiens relativistes. Ainsi, une analyse des mérites respectifs des deux fonctionnelles pourra être menée et exploitée en vue de la mise au point d’interactions effectives de nouvelle génération.

Astrophysique de laboratoire relativiste

La thèse proposée porte sur la modélisation numérique et théorique des plasmas ultra relativistes rencontrés dans certains objets astrophysiques, tels les sursauts gamma ou les nébuleuses de vent de pulsar, ainsi que dans de futures expériences d'interaction laser-plasma, faisceau-plasma ou gamma-plasma en régime extrême. Ces dernières pourront avoir lieu sur les installations laser multi-pétawatt actuellement en développement (par ex. le projet européen ELI) ou sur les accélérateurs de particules de nouvelle génération (par ex. l'installation américaine SLAC/FACET-II).
Les plasmas considérés, qui se caractérisent par un fort couplage entre particules, rayonnements énergétiques et mécanismes d'électrodynamique quantique, seront simulés numériquement au moyen d'un code « particle-in-cell » (PIC) développé au CEA/DAM depuis plusieurs années. Outre les effets collectifs propres aux plasmas, ce code décrit certains processus de rayonnement gamma et de création de paires électron-positron. Le but de la thèse sera d'y inclure de nouveaux mécanismes d'interaction photon-particule et photon-photon, puis d'examiner en détail leur impact dans diverses configurations expérimentales et astrophysiques.

Top