Étude numérique de la sensibilité de la transition à la turbulence des couches-limites hypersoniques aux modèles de gaz pour en conditions de vol.
Cette thèse vise à améliorer la compréhension des écoulements hypersoniques et notamment le phénomène de transition laminaire-turbulent. Pour assurer une conception correcte des véhicules hypersoniques, il est important de prédire précisément les flux thermiques à la paroi. Ces flux sont très fortement contraints par la nature de la couche limite (laminaire/ transitionnelle/ turbulente). Or, les mécanismes à l’origine de la transition laminaire-turbulent sont complexes et souvent mal compris.
Ce constat est d’autant plus vrai lorsque la complexité thermochimique de l’écoulement augmente, notamment pour des hauts nombres de Mach, où les effets dits de gaz réel tels que la dissociation ou le non-équilibre thermochimique ne sont plus négligeables. Cependant, devant certaines difficultés de simulation de ces effets, la plupart des études sont aujourd’hui encore effectuée en gaz parfait, même pour des nombres de Mach intermédiaire (7 par exemple). Ainsi, le rôle des effets thermochimiques sur les étapes successives de la transition reste encore mal connu.
Dans ce contexte, cette thèse vise à étudier numériquement l’impact de la montée en complexité des modèles de gaz sur la transition laminaire-turbulent. L’objectif final de la thèse est d’être en capacité d’effectuer des simulations numériques haute-fidélité de transition laminaire-turbulente en conditions de vol, et de mieux maitriser les modèles physiques et les paramètres de similitudes nécessaires pour restituer les essais en vol.
Pendant la thèse, le candidat sera amené à :
• Produire un état de l’art des modèles de gaz et leur influence sur les instabilités hydrodynamiques ;
• Réaliser des simulations haute-fidélité de cas canoniques de transition laminaire turbulente en faisant varier les modèles de gaz et les modèles thermochimiques utilisés ;
• Etudier l’impact de ces modèles sur les scénarios de transition ;
• Explorer les paramètres influents pour l’étude de la transition laminaire turbulente a haut Mach et haute-enthalpie.
Pour effectuer ces taches, le candidat pourra s’appuyer sur une collaboration constituée de trois organismes de recherche que sont l’ONERA, le laboratoire DynFluid de l’ENSAM Paris et le CEA-DAM, sur le centre du CESTA. Ces deux derniers organismes sont respectivement spécialisés dans la physique des gaz compressibles et la physique de la rentrée-atmosphérique. Ainsi, l’étudiant bénéficiera d’une base de connaissance solide en simulation de transition laminaire turbulente des gaz parfaits (ONERA/DYNFLUID/CEA), de bases de données expérimentales de références d’essais en soufflerie (ONERA/CEA) et de la maitrise des modèles thermochimiques complexes (Dynfluid/CEA). Cette thèse s’effectuera pour la première période en région parisienne à DynFluid pour monter en maturité sur la physique et les outils numériques, elle se suivra par une seconde période au CESTA à Bordeaux, afin de bénéficier des infrastructures de calcul et de l’expérience en rentrée-atmosphérique du CEA-DAM.