Alliage digital (GaN)n/(AlN)m pour la réalisation de LED capable d'émettre dans l'UV profond

Contexte :
Les semiconducteurs nitrures du groupe III (GaN, AlN, InN) sont réputés pour leurs excellentes propriétés d’émission lumineuse. Depuis plus de deux décennies, ils sont à la base des LED bleues et blanches utilisées dans le monde entier, grâce à des puits quantiques InGaN très efficaces (rendement quantique externe > 80 %). En revanche, les LED UV basées sur des puits quantiques AlGaN restent très peu efficaces (< 10 %) et ne sont devenues commercialement disponibles que récemment. Surmonter cette limitation constitue un défi majeur en optoélectronique : obtenir une émission UV profonde efficace (220–280 nm) permettrait de développer des applications bactéricides performantes, telles que la purification de l’eau, la stérilisation de surfaces ou l'élimination de virus.

Récemment, deux concepts innovants se sont révélés particulièrement prometteurs pour les LED UV :
1. Émission UV profonde à partir de monocouches de GaN dans l’AlN : il s’agit de faire croître quelques monocouches atomiques (ML) de GaN insérées dans une matrice d’AlN. Ce confinement quantique extrême conduit à une émission dans l’UV profond, jusqu’à 220 nm. Une forte efficacité d’émission est attendue grâce à une liaison excitonique intense, stable même à température ambiante.
2. Amélioration du dopage à l’aide d’alliages numériques gradués GaN/AlN : cette approche consiste à utiliser un alliage digital (GaN)?/(AlN)?, où n et m représentent le nombre de couches atomiques. Cette architecture permet un dopage efficace de type n et surtout p, ce qui constitue un verrou technologique majeur dans les matériaux AlGaN. Le GaN étant beaucoup plus facile à doper que l’AlN, cette méthode s’avère très prometteuse pour la fabrication de dispositifs.

Objectifs scientifiques :
L’objectif est de maîtriser la croissance de monocouches par MOVPE (épitaxie en phase vapeur métal-organique), la technique la plus pertinente sur le plan industriel :
- Projet de M2 : développer la croissance de monocouches de GaN sur substrats d’AlN, étudier leurs propriétés d’émission dans l’UV profond et optimiser les conditions de croissance pour obtenir un dépôt auto-limitant d’une seule couche.
- Poursuite en thèse : concevoir et fabriquer des alliages digitaux dopés GaN/AlN afin de réaliser les premières LED UV profondes efficaces basées sur cette architecture.

Contexte du laboratoire et collaborations :
Le groupe dispose d’une longue expérience dans l’étude de l’émission lumineuse visible et UV à partir de nanofils de nitrures. Nous avons déjà démontré une émission à 280 nm à partir un alliage digital (GaN)?/(AlGaN)?, confirmant la faisabilité de cette approche. Le projet sera fortement expérimental (croissance épitaxiale, caractérisations structurales et optiques avancées) et mené en étroite collaboration avec l’Institut Néel pour l’analyse en cathodoluminescence et la fabrication de dispositifs.

Pourquoi rejoindre ce projet ?
Acquérez une expertise en épitaxie, en physique des semiconducteurs et en optoélectronique. Travaillez dans un environnement dynamique et collaboratif, en lien étroit avec le monde industriel. Contribuez au développement de la prochaine génération de LED émettant dans l’UV profond.

Ajustement de structures moleculaires flexibles dans des films topographiques d'AFM a haute vitesse

La biologie structurale cherche à comprendre la fonction des macromolécules en déterminant la position précise de leurs atomes. Ses méthodes traditionnelles (cristallographie aux rayons X, RMN, microscopie électronique), bien qu’efficaces, offrent une vision statique des macromolecules, limitant l’étude de leur dynamique. Un nouveau paradigme émerge : la biologie structurale intégrative, combinant plusieurs techniques pour capturer, entre autre, la dynamique moléculaire. Cependant, malgré les améliorations apportées à la cristallographie sérielle femtoseconde, aux simulations de dynamique moléculaire et à la cryo-tomographie électronique, les méthodes actuelles peinent à atteindre l’échelle temporelle fonctionnelle (millisecondes à secondes).
L'avènement de la nouvelle microscopie à sonde à balayage, et en particulier, le développement récent de la microscopie à force atomique à haute vitesse (HS-AFM), permet d’observer des mouvements moléculaires à l’échelle de la milliseconde, mais manque de résolution atomique pour révolutionner la biologie structurale. L’objectif du sujet proposé est d’exploiter plus en avant l’utilisation de la HS-AFM en modélisant des structures atomiques détaillées au cœur des images obtenues. Les taches seront à la fois biophysique et informatique par l’amélioration de l’outils AFM-Assembly existant qui permet l’ajustement spatial direct de coordonnées atomiques de la molécule cible sous la topographie AFM. Le but est d’appliquer ce protocole à un nouveau type de données massives que sont les films topographiques obtenues par l’AFM à haute vitesse.
La thèse sera menée à l’Institut de biologie structurale de Grenoble, au sein du groupe Microscopie électronique et méthodes (MEM) de l’Institut de recherche interdisciplinaire de Grenoble (IRIG). Elle se fera en collaboration avec le laboratoire DyNaMo de Marseille, spécialisé dans l’acquisition de données haute vitesse en AFM, dans le cadre d'une demande de financement ANR commune.
L’intérêt scientifique du projet est majeur pour la biologie structurale intégrative moderne. Le grand défi scientifique des années à venir en biologie structurale est l’étude et l’analyse de la dynamique des molécules, afin de sortir du paradigme actuel (photographie instantanée) et de participer à l’émergence d’un nouveau paradigme (le film en temps réel).

Un nouveau matériau altermagnétique aux propriétés remarquables pour la spintronique

Les altermagnétiques constituent une nouvelle classe de matériaux magnétiques qui combinent de manière unique les avantages des ferromagnétiques (polarisation de spin des courants électriques) et des antiferromagnétiques (robustesse face aux champs magnétiques et dynamique de spin ultrarapide). Dans le cadre d’une collaboration internationale, nous avons découvert expérimentalement l’un des tout premiers et encore rares altermagnétiques disponibles, Mn5Si3, ouvrant ainsi la voie à de nouvelles recherches fondamentales et appliquées. Jusqu’à présent, le Mn5Si3 était principalement synthétisé par épitaxie par jets moléculaires, une méthode de haute précision mais présentant certaines limitations pour des études plus larges. Notre objectif est désormais de développer la croissance du Mn5Si3 par pulvérisation à haute température, une technique plus polyvalente et compatible avec les procédés industriels, afin d’explorer et démontrer ses propriétés de spin exceptionnelles.

Croissance et caractérisation de l’AlScN : un nouveau matériau prometteur pour les dispositifs piézoélectriques et ferroélectriques

Les semi-conducteurs III-nitrures — GaN, AlN et InN — ont révolutionné le marché de l’éclairage et pénètrent rapidement le secteur de l’électronique de puissance. Actuellement, de nouveaux composés nitrures sont explorés dans la recherche de nouvelles fonctionnalités. Dans ce contexte, le nitrure d’aluminium et de scandium (AlScN) s’est imposé comme un nouveau membre particulièrement prometteur de la famille des nitrures. L’incorporation de scandium dans l’AlN conduit à :

* Des constantes piézoélectriques accrues : ce qui rend l’AlScN très attractif pour la fabrication de générateurs piézoélectriques et de filtres SAW/BAW à haute fréquence.
* Une polarisation spontanée augmentée : cette polarisation renforcée peut être exploitée dans la conception de transistors à haute mobilité électronique (HEMTs) présentant une densité de charge très élevée dans le canal.
* La ferroélectricité : la découverte récente (2019) de propriétés ferroélectriques ouvre la voie au développement de nouvelles mémoires non volatiles.

Au cours des cinq dernières années, l’AlScN est devenu un sujet majeur de recherche, présentant de nombreuses questions ouvertes et de passionnantes perspectives à explorer.

Cette thèse de doctorat portera sur l’étude de la croissance et des propriétés de l’AlScN et du GaScN synthétisés par épitaxie par jets moléculaires (MBE). Le doctorant sera formé à l’utilisation d’un système MBE pour la synthèse des semi-conducteurs III-nitrures ainsi qu’à la caractérisation structurale des matériaux par microscopie à force atomique (AFM) et diffraction des rayons X (XRD). La variation des propriétés de polarisation du matériau sera étudiée par l’analyse de la photoluminescence de structures à puits quantiques. Enfin, le doctorant sera formé à l’utilisation de logiciels de simulation pour modéliser la structure électronique des échantillons, afin de faciliter l’interprétation des résultats optiques.

Développement de biocapteurs interférométriques photo-imprimés sur fibres optiques multicoeurs pour le diagnostic moléculaire

Les fibres optiques sont des dispositifs peu invasifs couramment utilisés en médecine pour l'imagerie tissulaire in vivo par endoscopie. Cependant, à l'heure actuelle, elles ne fournissent que des images et aucune information moléculaire sur les tissus observés. La thèse proposée s'inscrit dans un projet visant à conférer aux fibres optiques la capacité d'effectuer des reconnaissances moléculaires afin de développer des biocapteurs innovants capables d'effectuer une analyse moléculaire en temps réel, à distance, in situ et multiplexée. Un tel outil pourrait apporter des progrès importants dans le domaine médical, et plus particulièrement dans l'étude des pathologies cérébrales pour lesquelles la connaissance de l'environnement tumoral, difficilement accessible par des biopsies classiques, est primordiale.
L'approche proposée repose sur l'impression par polymérisation à 2-photons de structures interférométriques à l'extrémité de chacun des cœurs d'un assemblage multifibre. Le principe de détection repose sur les interférences se produisant dans ces structures et leur modification par l'adsorption de molécules biologiques. Chacune des fibres de l’assemblage agira comme un capteur individuel et la mesure de l'intensité de la lumière rétro-réfléchie à l'extrémité fonctionnalisée permettra de rendre compte des interactions biologiques se produisant sur cette surface. Grâce à la modélisation du phénomène d’interférence, nous avons déterminé des paramètres pour optimiser la forme et la sensibilité des structures interférométriques (PTC InSiBio 2024-2025). Ces résultats ont permis l'impression et la caractérisation de la sensibilité de structures interférométriques sur mono-fibres. Les objectifs de la thèse sont de poursuivre cette caractérisation optique sur de nouveaux échantillons et de développer des méthodes de fonctionnalisation photo-chimiques originales afin de greffer plusieurs sondes biologiques à la surface des assemblages de fibres. Cette multi-fonctionnalisation permettra de réaliser une détection multiplexée, essentielle pour envisager une application médicale future. Selon l'avancement de la thèse, les biocapteurs seront validés au travers de la détection de cibles biologiques dans des milieux de plus en plus complexes pouvant aller jusqu'à un modèle de tissu cérébral.

Modélisation d'une diode magnonique basée sur la non-réciprocité des ondes de spin dans les nanofils et les nanotubes

Ce projet de doctorat porte sur le phénomène émergent de non-réciprocité des ondes de spin dans les fils magnétiques cylindriques, de leurs propriétés fondamentales jusqu'à leur exploitation pour la réalisation de dispositifs à base de diodes magnoniques. Des expériences préliminaires menées dans notre laboratoire SPINTEC sur des fils cylindriques, avec une aimantation axiale dans le cœur et azimutale à la surface du fil, ont révélé un effet asymétrique géant (courbes de dispersion asymétriques avec des vitesses et des périodes différentes pour les ondes se propageant vers la gauche et vers la droite), créant même une bande interdite pour une direction de mouvement donnée, liée à la circulation de la magnétisation (vers la droite ou vers la gauche). Cette situation particulière n'a pas encore été décrite théoriquement ni modélisée, ce qui constitue un terrain inexploré et prometteur pour ce projet de doctorat. Pour modéliser la propagation des ondes de spin et dériver les courbes de dispersion pour un matériau donné, nous prévoyons d'utiliser divers outils numériques : notre logiciel micromagnétique 3D par éléments finis feeLLGood et le logiciel 2D open source TetraX dédié aux calculs de modes propres et spectres associés. Ce travail sera mené en étroite collaboration avec des expérimentateurs, dans le but à la fois d'expliquer les résultats expérimentaux et d'orienter les futures expériences et les axes de recherche.

Approches chémobiologiques pour la toxicologie des terres rares chez l’Humain

L’utilisation technologique des lanthanides s’est intensifiée dans des domaines aussi divers que les énergies renouvelables, l’informatique et la médecine. Leur utilisation croissante pose la question de leur impact sur l’environnement et la santé humaine. Cependant, peu d’études existent sur leur toxicité éventuelle et les mécanismes moléculaires qui la sous-tendent. Nous proposons une approche pluridisciplinaire pour répondre à ces questions, et notamment : (i) identifier les protéines impliquées dans la réponse cellulaire à l’exposition aux lanthanides ; (ii) identifier les protéines interagissant avec ces ions métalliques, en utilisant des outils chémobiologiques développées au laboratoire. Nous déterminerons ainsi les partenaires d’interaction de ces métaux critiques, leur effet sur les organismes vivants et les caractéristiques clés qui leur permettent de lier le métal. Nos résultats permettront d’étendre nos connaissances sur la toxicologie de ces métaux, peu étudiée, et d’informer les politiques de protection environnementale et humaine. Sur le long terme, la compréhension des mécanismes moléculaires des interactions métal-vivant permettra l’émergence de stratégies bio-inspirées pour leur extraction, leur recyclage et leur (bio)remédiation.

Détection ultra-précoce de pathogènes bactériens dans le sang de patient

Ce projet vise à développer un instrument d'imagerie par résonance des plasmons de surface (SPRi) polyvalent et facile à utiliser pour la détection rapide et à large spectre de concentrations faibles de bactéries pathogènes dans des échantillons complexes, dont le sang en particulier. La SPRi est une technique, sans marquage, qui permet de sonder un échantillon (quelle que soit sa transparence optique), en temps réel. En raison de la grande sensibilité du phénomène de plasmon, la plage dynamique de variation d'indice mesurable est limitée par détection SPRi lorsque la lecture est réalisée à un angle fixe, comme c'est le cas dans les dispositifs déployés dans le commerce. Cela réduit l'utilisation de tels instruments optiques à l'étude de milieux dont l'indice reste relativement stable pendant l'expérience et dont les sondes moléculaires ont des poids moléculaires comparables aux cibles (suivi d'interactions bi-moléculaires).
Ainsi, cela limite considérablement la détection de bactéries en croissance dans des milieux complexes. Notre laboratoire a développé des solutions originales pour la détection de très faibles taux de contaminations dans des matrices alimentaires (création d'une start-up en 2012), mais la SPRi se révèle inadaptée pour la détection de bactéries dans le sang, en partie en raison de la très forte variabilité intrinsèque de cette matrice.
Ces limites seront supprimées en intégrant cinq briques complémentaires :
1. La conception d'un instrument optimisé pour l'enregistrement en temps réel d'images SPR sur une plage définie d'angles d'éclairage;
2. Le développement d'une analyse et de traitement des données SPR dédiée pour extraire en temps réel l'information la plus pertinente pour chaque sonde à partir des images ;
3. La fonctionnalisation des biopuces par une combinaison de sondes appropriées (séries de peptides tels que les peptides antimicrobiens (AMPs), anticorps et même bactériophages) pour optimiser le nombre d'identifications possibles avec un ensemble réduit de sondes ;
4. L'apprentissage des "signatures SPRi 4D" spécifiques de souches modèles dans des matrices sanguines ;
5. La validation des performances du nouvel instrument « 4D-SPRi » comme outil de détection et de caractérisation des bactéries issues de souches hospitalières par rapport à des techniques de référence.

Top