Décrypter les rôles de la chimie de surface et de la structuration multi-échelle dans le contrôle des performances de stockage des supercondensateurs à base de graphène

L'objectif de ce projet de recherche fondamentale est d’élucider les corrélations existantes, entre les propriétés des matériaux à base de graphène et leurs performances de stockage électrochimique, en dispositif supercondensateur. L’importance de la chimie de surface et celle de la structure multi-échelle de ces matériaux seront spécifiquement étudiées, car la plupart des propriétés physico-chimiques de ces matériaux découlent de ces 2 paramètres. Aussi, des matériaux spécifiquement conçus pour présenter des chimies de surface différentes (dopage N, différents degrés de réduction…) et différentes structurations seront synthétisés et caractérisés, en utilisant des méthodes classiques à avancées (CV-SANS, in-situ SANS…), spécifiquement adaptées à l’étude de ces propriétés et de leur évolution en cours de cyclage électrochimique. Les résultats obtenus permettront de fournir une compréhension multi-échelle du mécanisme de stockage et aideront à concevoir des matériaux dotés de propriétés de stockage optimisées.

Porte à deux bits quantiques à base d'hétérostructures de Germanium

Nous travaillons sur les qubits de spin en germanium, un matériau prometteur et polyvalent pour concevoir des bits quantiques de spin. Dans ces « hétérostructures », les trous sont hébergés dans une couche de germanium prise en sandwich entre deux couches de silicium/germanium. Ces trous présentent une mobilité très élevée et, contrairement aux spins électroniques qui ne sont sensibles qu'aux champs magnétiques, les spins des trous peuvent être manipulés par un champ électrique, c'est-à-dire par des tensions sur une grille. Ce contrôle entièrement électrique présente un inconvénient : les spins deviennent sensibles au bruit électrique et donc au bruit de charge dans les dispositifs. Les hétérostructures de germanium sont dotées de grilles métalliques qui écrantent en grande partie le bruit de charge provenant des défauts qu'elles recouvrent; cependant, dans les régions non couvertes par les grilles, les charges non écrantées sont responsables du bruit de charge qui limite le temps de cohérence.
Nous sommes en train d'acquérir un équipement de salle blanche unique combinant le dépôt et la gravure de couches atomiques, qui permettra de développer des structures originales où les grilles pénètrent profondément dans l'hétérostructure, afin de contourner l'effet de ces charges solitaires sur la surface dans le cas des grilles en surface. Grâce à cette nouvelle approche, la définition et la manipulation des points quantiques seront extrêmement simplifiées, et nous prévoyons d'obtenir des dispositifs de portes à deux qubits dans cette thèse.

Imagerie des champs de déformations dans les semi-conducteurs: du matériau au dispositif

Ce sujet traite de la visualisation et de la quantification des champs de déformation dans les matériaux semi-conducteurs, par des techniques utilisant le rayonnement synchrotron. Le contrôle de la déformation est fondamental pour optimiser les propriétés de transport électronique, mécaniques et thermiques. Dans une approche duale, nous combinerons la détermination du tenseur local de déformation déviatorique en balayant l'échantillon sous un nano faisceau polychromatique (µLaue) et une imagerie d'un champ de vu donné (microscopie aux rayons X en champ sombre, DFXM).

Des recherches originales s’intéresseront à améliorer l’analyse : (1) de la précision et de la vitesse de détermination quantitative des champs de déformation, (2) des distributions des gradients de déformation, et (3) du champ de déformation dynamique dans les matériaux piézoélectriques par des mesures stroboscopiques. Pour illustrer ces points, trois cas scientifiques correspondant à des matériaux microélectroniques pertinents et de complexité croissante seront étudiés :

1.Champs de déformation statiques entourant des contacts métalliques dans le Si, tels que les vias à travers le silicium (TSV) à haute densité dans la technologie CMOS.
2.Gradients de déformation dans des structures hétéroépitaxiales complexes Ge/GeSn avec des variations de composition le long de la direction de croissance.
3.Études de déformation dynamique de résonateurs acoustiques LiNbO3 en volume avec une fréquence de résonance dans la plage des MHz.

La validation de cette approche conceptuelle permettra une avancée significative dans le domaine de la microélectronique et l'ingénierie de déformation.

Valorisation du biogaz par conversion du CO2 avec une biorafinerie avancée

L'utilisation de sources d'énergie renouvelables est un défi majeur pour les décennies à venir. L'une des façons de répondre à la demande croissante d'énergie est de valoriser les déchets. Parmi les différentes stratégies actuellement développées, la valorisation de biogaz issu des stations de méthanisation apparaît comme une approche prometteuse. En effet, le biogaz est composé majoritairement de méthane, mais aussi de CO2 (environ 40%) non utilisé. Le projet proposé ici est le reformage du biogaz en utilisant une source de biohydrogène renouvelable pour convertir le CO2 restant en CH4 pur. Nous proposons de mettre en place une bioraffinerie avancée autonome qui combinera la photoproduction d'hydrogène à partir de déchets de l'industrie laitière réalisée par la bactérie Rhodobacter capsulatus combiné avec le CO2 présent dans le biogaz dans une unité de biométhanation contenant une culture de Methanococcus maripaludis, une archée méthanogène capable de produire du CH4 à partir de CO2 et de H2 selon la réaction de Sabatier. Le but est de produire du méthane de façon non énergivore et respectueuse de l'environnement.

Assemblage de la Nitrogénase: Qu'est ce qui distingue une nitrogénase d'une protéine échafaudage

Face aux crises du changement climatique et de la dégradation des sols, il est urgent de trouver des solutions pour réduire les émissions de gaz à effet de serre et la dépendance aux engrais azotés, tout en garantissant des rendements agricoles suffisants pour nourrir une population mondiale croissante. Une solution naturelle réside dans l'utilisation de la nitrogénase, une enzyme bactérienne capable de fixer l’azote atmosphérique en ammoniac, une forme directement assimilable par les plantes. Cependant, la biosynthèse de son cofacteur métallique, le FeMo-co, est un processus complexe nécessitant l’action coordonnée de nombreuses protéines.
L'objectif de cette thèse est de simplifier ce processus en étudiant des systèmes de maturation de la nitrogénase trouvés dans certains organismes, où un nombre réduit de protéines est utilisé, notamment grâce à la combinaison de plusieurs fonctions en une seule. Par une étude structurale et fonctionnelle comparative, nous chercherons à comprendre le rôle précis de chaque élément et comment simplifier ce système tout en conservant une activité optimale. Une telle avancée permettrait d’intégrer la capacité de fixation de l’azote dans les céréales, réduisant ainsi la dépendance aux engrais azotés.
Ce projet est issu d’une collaboration entre des équipes du CEA à l’Institut de Biologie Structurale et du CSIC à Madrid, reconnues pour leur expertise dans l'étude structurale des métalloprotéines ainsi que la biochimie et la génétique de la machinerie d’assemblage de la nitrogénase. Le doctorant bénéficiera d’un environnement scientifique de pointe, propice à une formation complète et enrichissante, pour une carrière future en recherche académique ou en R&D.

Top