Impact de la magnétohydrodynamique sur l’accès et la dynamique des régimes d’opération avec point X rayonnant (XPR)
L'opération d'ITER et de futures centrales à fusion devra en particulier garantir la pérennité des composants face au plasma (CFP) équipant le divertor, cet élément périphérique dédié à l'extraction de la chaleur et des particules. Dans ce cadre, deux facteurs clés sont à prendre en compte : les flux de chaleur devront rester en dessous des limites technologiques à la fois en stationnaire et lors d'évènements transitoires violents. Un régime d'opération récemment développé satisfait ces deux contraintes : le point X rayonnant (XPR). Les expériences sur plusieurs tokamaks, notamment sur WEST qui détient le record de durée plasma dans ce régime (> 40 secondes), ont montré qu'il conduisait à une réduction drastique des flux de chaleur sur les CFP en transférant l'essentiel de l'énergie du plasma aux photons et aux particules neutres, et par ailleurs mitigeait – voire supprimait – des instabilités magnétohydrodynamiques (MHD) de bord particulièrement délétères, les ELMs (edge localised modes). Les mécanismes gouvernant ces mitigation et suppression restent très mal compris. En outre, le XPR peut s'avérer lui-même instable et conduire à une disruption, la perte brutale du confinement du plasma suite au déclenchement d'instabilités MHD globales.
L'objectif de cette thèse est double : (i) comprendre la physique à l'œuvre dans l'interaction XPR-ELMs, et (ii) optimiser l'accès et la stabilité du régime XPR. Pour ce faire, l'étudiant.e utilisera le code à 3-dimensions de MHD non-linéaire JOREK, la référence Européenne dans le domaine. Il s'agira notamment de préciser les limites du domaine opérationnel stable du XPR avec des ELMs faibles ou absents, et d'identifier les actuateurs principaux (quantité et espèces d’impuretés injectées, géométrie du plasma). Une participation aux campagnes expérimentales du tokamak WEST opéré au CEA de Cadarache – et de MAST-U opéré par l'UKAEA – est également envisagée pour confronter les résultats et prédictions des simulations aux mesures expérimentales.
Étude du transport des impuretés dans des plasmas à triangularité négative et positive
La fusion nucléaire dans un tokamak est une source d'énergie prometteuse. Cependant, une question se pose : quelle configuration plasma est la plus susceptible de produire de l'énergie nette ? Pour contribuer à y répondre, au cours de cette thèse, nous étudierons l’impact de la géométrie magnétique (comparaison entre triangularité positive et négative) sur le transport collisionnel et turbulent du tungstène (W). Les performances d’un tokamak dépendent fortement du confinement de l’énergie qu’il peut réaliser. Le confinement se dégrade fortement en fonction du transport turbulent et du rayonnement, ce dernier étant principalement émis par le W. Sur ITER, la quantité tolérée de W au cœur du plasma est d’à peine 0,3 microgrammes environ. Des expériences ont montré que la géométrie plasma à triangularité négative (NT) est bénéfique pour le confinement car elle réduit significativement le transport turbulent. Cette géométrie permet d'atteindre un confinement équivalent à celui obtenu avec la configuration ITER (mode-H en triangularité positive), sans les limitations d’une puissance seuil minimale et sans les relaxations du bord du plasma qui lui sont caractéristiques. Cependant, des questions subsistent : quel niveau de transport du W est rencontré en NT comparé à la géométrie positive ? Quel niveau de rayonnement peut-on espérer dans des futurs réacteurs en NT ? Pour contribuer à répondre à ces questions, au cours de cette thèse, nous évaluerons le rôle de la triangularité sur le transport des impuretés dans différents scénarios dans WEST. La première phase du travail est expérimentale. Ensuite, la modélisation du transport d’impuretés sera réalisée en utilisant des modèles collisionnels et turbulents. Une collaboration est prévue avec des experts internationaux en plasma dans des configurations NT, avec UCSD (États-Unis) et EPFL (Suisse).
Contrôle de la turbulence des modes d’électrons piégés à l’aide du chauffage à la résonance cyclotronique électronique
Les performances en terme de gain énergétique d’une centrale à fusion de type tokamak seront limitées par le transport turbulent. L’instabilité des modes d’électrons piégés est l’une des principales instabilités à l’origine de la turbulence dans les tokamaks. Par ailleurs, le chauffage à la résonance cyclotronique électronique ECRH est le système de chauffage générique dans les tokamaks actuels et à venir. Les deux processus physiques reposent sur des interactions résonantes avec les électrons, en espace et en vitesse. Comme le chauffage a pour effet de dépeupler de ses électrons la zone d’interaction résonante, superposer sa résonance à celle de l'instabilité peut théoriquement entrainer une stabilisation des modes d’électrons piégés.
L’objectif de la thèse est double : (i) construire des scenarios où ce mécanisme existe et le valider au moyen de simulations linéaires, puis (ii) caractériser son effet et quantifier son efficacité en régime non-linéaire où les effets linéaires seront en compétition avec l'auto-organisation de la turbulence, les processus collisionnels et la dynamique des profils moyens. Potentiellement, cette technique de contrôle entièrement nouvelle pourrait permettre d’améliorer les performances des tokamaks sans surcoût. La thèse demandera une compréhension théorique fine des deux processus résonnants étudiés et de leurs différents paramètres de contrôle. Elle reposera sur l’utilisation du code gyrocinétique GYSELA dédié à l'étude du transport et de la turbulence dans les plasmas de tokamaks, et récemment enrichi d'un module de chauffage ECRH. Un volet expérimental est également envisagé sur les tokamaks WEST et/ou TCV pour valider le(s) scénario(s) de contrôle de la turbulence le(s) plus prometteur(s).
Contrôle du plasma en temps réel par calorimétrie
Dans les machines de fusion thermonucléaire, les composants face au plasma sont soumis à d’intenses flux de chaleur. Le tokamak WEST a des composants activement refroidis à l’eau afin de limiter leur échauffement. Des mesures calorimétriques sur les composants permettent de mesurer la puissance reçue par chaque composant. Il est ainsi possible d’effectuer un contrôle du plasma en position ou en puissance additionnelle en fonction de ces puissances reçues.
Dans cette thèse, une simulation du contrôle du plasma par calorimétrie sera effectuée, en simulant les flux de chaleur reçus par les composants en fonction de la position du plasma et de la réponse calorimétrique associée. Des mesures de calorimétrie in-situ seront effectuées sur les composants en haut et bas de la machine lors d’expériences plasmas dédiées pour affiner les simulations et le contrôle de la position du plasma de WEST à partir des mesures calorimétriques sera finalement mis en place et validé lors d’expériences dédiées, que ce soit dans un but de protection des composants face au plasma, mais aussi pour des aspects de physique du plasma.
Contrôle temps-réel des instabilités MHD lors des chocs longs de WEST
Dans les plasmas de fusion magnétique, les instabilités macroscopiques magnétohydrodynamiques (MHD) à basse fréquence (~1-10 kHz) peuvent dégrader les performances et la stabilité du plasma. Lors des décharges longues sur le tokamak WEST, de tels modes apparaissent fréquemment provoquant une chute de la température centrale, une augmentation de la résistivité, réduisant ainsi les performances et conduisant à une fin prématurée des décharges. Leur détection en temps réel puis l’application de méthodes de stabilisation sont donc essentielles pour l’optimisation des performances de WEST mais aussi en vue des futures machines comme ITER.
Des instruments comme la radiométrie ECE (émission cyclotronique électronique) ou la réflectométrie peuvent mesurer les perturbations de température ou de densité générées par ces instabilités MHD avec une bonne résolution spatiale et temporelle. Toutefois, l’analyse des mesures est actuellement réalisée a posteriori après la décharge. Or, une détection en temps réel est indispensable pour déployer une stratégie de contrôle comme une modification du critère de stabilité MHD. Ce critère MHD est très sensible à une génération locale de courant ou un dépôt de chaleur, processus pour lesquels le système de chauffage ECRH/ECCD (Electron Cyclotron Resonance Heating/Current Drive) est bien adapté.
L’objectif de cette thèse est de développer puis déployer une stratégie de contrôle des instabilités MHD basses fréquence sur le tokamak WEST. L’étudiant commencera par développer la détection en temps-réel de ces instabilités grâce au radiomètre ECE, puis inclura d’autres mesures (imagerie ECE, réflectométrie) pour améliorer la fiabilité et la précision. Différentes stratégies de stabilisation seront étudiées via des outils de modélisation intégrée. L’ECRH/ECCD est l’actionneur de référence, mais d’autres leviers comme une modification temporaire de paramètres plasma (courant, température, densité) seront aussi évalués. Enfin, la stratégie de contrôle sera intégrée au système de contrôle de WEST en commençant par des algorithmes simples avant de tester des approches avancées (réseaux de neurones, apprentissage profond).