Mesures de rendement de fission pour l'évaluation de la chaleur de désintégration du combustible nucléaire usé.
La réaction de fission est un processus violent au cours duquel un noyau lourd est divisé en deux composants, les fragments de fission. La distribution des fragments de fission produits est très large ; plus de 300 isotopes radioactifs différents peuvent être produits lors de la fission et leur désintégration radioactive est une question importante pour la manipulation et le stockage sûr du combustible nucléaire usé.
Le dispositif expérimental disponible au GANIL permet une identification précise et complète des fragments de fission, avant leur désintégration radioactive.
Une campagne expérimentale a été menée au VAMOS en 2024 pour étudier la fission de différents actinides produits dans des réactions de transfert de plusieurs nucléons, sur la base de la technique de cinématique inverse.
Les données obtenues constituent une référence importante pour les modèles nucléaires et les codes de simulation de la chaleur dégagée lors de la désintégration du combustible nucléaire usagé.
Ces données innovantes contr
Leçons conceptuelles de la causalité indéterminée
Récemment, il a été reconnu que les structures causales en mécanique quantique permettent de concevoir une nouvelle ressource non classique, connue sous le nom de causalité indéterminée, qui ouvre de nouvelles perspectives en information quantique. Malgré des avancées théoriques significatives et quelques réalisations expérimentales, les implications conceptuelles de la causalité indéterminée restent mal comprises. Dans le même temps, la causalité quantique est devenu un élément fondamental du formalisme mathématique afin d’élucider les divergences entre les approches opérationnelles et spatiotemporelles en physique. Elle a déjà facilité une compréhension améliorée de concepts fondamentaux tels que les événements (Vilasini et Renner, Phys. Rev. Lett. 133, 080201), les faits (Brukner, Nature Phys. 16, 1172–1174, 2020), les entrées/sorties (Chiribella et Liu, Comm. Phys. 5, 190, 2022), les systèmes (Grinbaum, Stud. Hist. Phil. Mod. Phys. 58, 22-30, 2017) et le calcul (Araujo et al., Phys. Rev. A 96, 052315, 2017).
Dans cette thèse, le candidat développera une compréhension systématique des leçons conceptuelles de la causalité indéterminée au sein des cadres classiques, quantiques et des théories probabilistes généralisées (GPT). Il examinera la signification fondamentale des configurations bipartites et multipartites, y compris leurs capacités spatio-temporelles et computationnelles. Pour réaliser des progrès significatifs dans le domaine des fondements de la théorie quantique, le candidat cherchera à appliquer la causalité indéterminée pour approfondir notre compréhension de la théorie quantique standard et de ses interprétations.
Les questions de recherche spécifiques incluent :
• Établir des bases conceptuelles pour l'identification des systèmes et des événements à travers le temps, en particulier en relation avec les ordres causaux indéfinis et les scénarios de « l'ami de Wigner ».
• Placer cette discussion fondamentale émergente dans un cadre philosophique et métaphysique plus large.
• Aborder la notion d'agent/observateur en tant qu'entité théorique plutôt que métathéorique.
Des publications sont attendues dans des revues de physique (PRL, PRA, NJP, Quantum) et/ou dans des revues de philosophie de la physique (Philosophy of Physics, BJPS, Found. Phys., SHPMP). Des collaborations sont prévues avec des groupes en France, en Autriche, en Belgique et au Canada.
Optimisation de détecteurs de rayonnement gamma pour l’imagerie médicale. Tomographie par émission de positrons temps de vol
La tomographie par émission de positrons (TEP) est une technique d'imagerie médicale nucléaire largement utilisée en oncologie et en neurobiologie.
Nous vous proposons de contribuer au développement d’une technologie ambitieuse et brevetée : ClearMind. Le premier prototype est à nos laboratoires. Ce détecteur de photons gamma utilise un cristal monolithique de PbWO4, dans lequel sont produits des photons Cherenkov et de scintillation. Ces photons optiques sont convertis en électrons par une couche photo-électrique et multipliés dans une galette à microcanaux. Les signaux électriques induits sont amplifiés par des amplificateurs gigahertz et numérisés par les modules d'acquisition rapide SAMPIC. La face opposée du cristal sera équipée d'une matrice de photo-détecteur en silicium (SiPM).
Vous travaillerez dans un laboratoire d’instrumentation avancé dans un environnement de physique des particules.
Il s’agira d’abord d’optimiser les « composants » des détecteurs ClearMind, pour parvenir à des performances nominales. Nous travaillerons sur les cristaux scintillants, les interfaces optiques, les couches photo-électriques et les photo-déteceturs rapides associés, les électroniques de lectures.
Il s’agira ensuite de caractériser les performances des détecteurs prototypes sur nos bancs de mesure en développement continu.
Il s’agira enfin de confronter les propriétés mesurées de nos détecteurs à des simulations dédiées (Monté-Carlo sur logiciels Geant4/Gate).
Un effort particulier sera con-sacré au développement de cristaux scintillants ultra-rapides dans le contexte d’une collaboration européenne.
MESURE DE LA MASSE DU BOSON W AVEC LE DETECTEUR ATLAS AU LHC
L'objectif de la thèse est une mesure précise de la masse et de la largeur du boson W, en étudiant ses desintegrations leptoniques avec le détecteur ATLAS au LHC. L'analyse sera basée sur l'ensemble des données du Run 2 du LHC, et vise une précision sur la masse de 10 MeV.
Le candidat s'impliquera dans l'étude de l'alignement et de la calibration du spectromètre à muons d'ATLAS. L'IRFU a joué un rôle prépondérant dans la conception et la construction de cet instrument et s'implique fortement dans son exploitation scientifique. Il s'agira de combiner de manière optimale la mesure donnée par le spectromètre avec celle du détecteur interne d'ATLAS, à l'aide d'un modèle précis du champ magnétique et du positionnement relatif de ces systèmes, afin de reconstruire la cinématique des muons avec la précision requise pour la mesure.
La deuxième phase du projet consiste à améliorer la modélisation du processus de production et de désintégration des bosons W et d'optimiser l'analyse en tant que telle afin de minimiser l'incertitude finale de la mesure. Le résultat de la mesure sera combiné avec les autres mesures existantes, et interprété en termes de compatibilité avec la prédiction du Modèle Standard ou comme indication de la présence de nouvelle physique.