PROPRIÉTÉS MAGNÉTIQUES DANS LES RÉSEAUX OCTOCHLORES

Ces dernières années, les progrès réalisés dans le domaine des aimants frustrés ont conduit à l'émergence de concepts innovants,notamment de nouvelles phases de la matière. Ces dernières ne présentent aucun ordre à longue portée (aucune rupture de symétrie, mais, dans les systèmes classiques, elles correspondent à un état fondamental hautement dégénéré. Un exemple emblématique est celui de la glace de spin dans les pyrochlores : dans ce cas, la construction des configurations dégénérées repose sur une règle simple,qui stipule que la somme des quatre spins dans tout tétraèdre du réseau magnétique doit être nulle. Cette règle dite « règle de la glace » peut être comprise comme la règle de conservation d'un champ de jauge émergent. La preuve expérimentale de cette physique a été fournie par l'observation de points singuliers dans la fonction de corrélation spin-spin lors d'expériences de diffusion élastique des neutrons. Ces points singuliers, appelés points de pincement (pinch-points), apparaissent parce que les corrélations du champ émergent sont de nature dipolaire, avec des corrélations spin-spin algébriques.
L'origine de cette physique réside dans la conjonction entre la connectivité du réseau, l'anisotropie et les interactions magnétiques, qui concourent à sélectionner des configurations où une contrainte locale entre les spins est préservée. Récemment, plusieurs auteurs ont proposé une généralisation de ce concept à d'autres géométries et d'autres contraintes, comme par exemple le réseau « octochlore », formé d'octaèdres partageant leurs sommets. En fonction de la contrainte choisie, différents liquides de spin ont été prédits théoriquement.
Une réalisation expérimentale du réseau octochlore peut être trouvée dans les fluorures de terres rares KRE3F10, dont la structure cristalline forme un réseau de petits et grands octaèdres RE joints par les sommets. La physique des composés KRE3F10 est encore très mal connue, avec seulement quelques articles sur des mesures de magnétisation effectuées il y a deux décennies. L'objectif de ce travail de doctorat sera donc de caractériser l'état fondamental de deux membres 'Kramers' du système KRE3F10 (RE = Dy3+, Er3+), afin d'identifier en particulier toute signature de la physique des liquides de spin suggérée par les travaux théoriques récents, et de mieux comprendre les contraintes qui y conduisent.

Recyclage chimique de déchets plastiques oxygénés et azotés par des voies de réduction catalytique

Depuis la fin de la seconde guerre mondiale, le recours aux plastiques pétrosourcés a favorisé l’émergence d’un modèle de consommations axé sur l’utilisation de produits jetables et la production mondiale de plastiques atteint désormais468 millions de tonnes par an. Ces plastiques, non biodégradables, sont à l’origine de nombreuses pollutions environnementales. Depuis les années 50, seulement 9 % de ces déchets ont fait l'objet d'un processus de recyclage. La majorité a été incinérée ou stockée en décharge. Dans le contexte actuel de cette économie linéaire, les enjeux sanitaires, climatiques et sociétaux rendent indispensable une transition vers une approche circulaire des matières. Cette évolution implique le développement de voies de recyclage à la fois efficaces et robustes. Alors que les voies de recyclage actuelles les plus répandues sont principalement des procédés mécaniques qui s’appliquent à des gisements particuliers de déchets, comme les bouteilles en plastique PET, le développement de méthodes chimiques de recyclage semble prometteur pour traiter des déchets dont les filières de recyclage sont inexistantes. Ces procédés chimiques innovants permettent de récupérer la matière carbonée des plastiques pour en produire de nouveaux.
Le projet doctoral vise à développer de nouvelles voies de recyclage chimique de déchets plastiques mixtes oxygénés/azotés tels que les polyuréthanes (mousses d’isolement, matelas, etc.) et les polyamides (fibres textiles, etc.), dont les filières de recyclage sont quasi inexistantes. Ce projet repose sur une stratégie de dépolymérisation catalytique de ces plastiques, par coupures sélectives des liaisons carbone-oxygène et/ou carbone-azote, pour former les monomères ou leurs dérivés correspondants. Pour ce faire, des systèmes catalytiques mettant en jeu des catalyseurs métalliques couplés à des réducteurs abondants et peu coûteux seront développés, et nous chercherons à comprendre leur mode de fonctionnement.

Électrodes positives composites dans les batteries à l’état solide : influence du procédé de fabrication sur les performances électrochimiques

Le développement de batteries tout solide (SSBs) à haute densité énergétique et à faible coût est essentiel pour l’adoption à grande échelle des technologies de stockage d’énergie de nouvelle génération. Parmi les différents candidats pour la cathode, le LiFePO4 (LFP) et le LiFe1??Mn?PO4 (LFMP) offrent des avantages en termes de sécurité et de coût, mais présentent des tensions de fonctionnement faibles et une cinétique limitée comparées aux oxydes lamellaires riches en nickel tels que le LiNi0.85Mn0.05Co0.1O2 (NMC85). Afin d’équilibrer densité énergétique, puissance et stabilité, ce projet de thèse vise à développer des cathodes composites combinant LFMP et NMC85 dans des proportions optimisées pour des configurations tout solide utilisant des électrolytes à base de soufre (Li6PS5Cl). Nous examinerons l’influence des méthodes de fabrication — notamment la préparation des électrodes faites à partir d’encres et l’optimisation du couple liant–solvant — sur les performances électrochimiques et structurales obtenues. Des caractérisations approfondies operando et in situ (XRD, Raman et RMN) seront menées afin d’élucider la diffusion du lithium, les mécanismes de transition de phase et le comportement rédox au sein des systèmes composites. La spectroscopie d’impédance électrochimique (EIS) et des méthodes de titration permettront de quantifier la cinétique du lithium à différents états de charge. En corrélant les conditions de fabrication, la microstructure et le comportement électrochimique, ce projet vise à identifier les compositions de cathodes et les stratégies de fabrication optimales pour des SSBs performantes et industrialisables. Au global, le projet vise à fournir une compréhension complète des relations structure–propriété dans les cathodes composites, ouvrant la voie à des batteries tout solide pratiques offrant une sécurité, une stabilité et une rentabilité accrues.

Effets de Friction couplés de la mer de Dirac et du champ électromagnétique du vide sur des atomes en mouvement

Les fluctuations quantiques induisent des forces macroscopiques conservatrices telles que l'effet Casimir. Elles pourraient également provoquer des forces dissipatives, appelées friction du vide (ou friction quantique). Jusqu'à présent, cet effet de friction a été calculé en considérant uniquement les fluctuations électromagnétiques, c'est-à-dire sans tenir compte de la mer de Dirac. Ce projet est consacré à l'extension de nos recherches dans cette direction : les électrons, en tant que principaux contributeurs de l'interaction matière-champ, interagissent également avec les paires virtuelles électron-positron dans le vide quantique. Quelle part de la friction quantique, à température nulle ou finie du vide, pourrait être due à ce type d'interaction ? Une première étape consistera à adapter le cadre semi-classique actuel pour inclure la polarisation du vide et la création de paires. Ce faisant, on rencontrera des cut-offs de fréquence haute finie, traditionnellement liées à la création de paires virtuelles ; on déterminera ainsi une composante de friction liée au cut-off des intégrales de Fourier. Sur cette voie de recherche, on veillera à maintenir la cohérence mathématique de l'ensemble du cadre. Un objectif à plus long terme reste un traitement relativiste quantique complet et cohérent de la friction quantique au niveau atomique.

Cartographie des potentiels de surface des oxydes métalliques activées catalytiquement utilisés comme des photoanodes

Lors de la photoélectrolyse d’eau, le transfert de charges à l'interface photoanode/électrolyte est déterminé par l'alignement des bandes d'énergie, à la fois côté électrode et côté électrolyte. Le potentiel de surface de l’électrode joue un rôle majeur sur la courbure finale des bandes et par conséquent sur la séparation des charges à l’interface. Aussi appelé potentiel de surface électrochimique, il varie en fonction de l'environnement (vide, air, eau, etc.). L'objectif de cette thèse est d'aborder la réaction d’oxydation de l’eau (OER) à l'interface photoanode/électrolyte en termes de bandes d'énergie et en particulier du point de vue du potentiel de surface électrochimique. Ainsi, au cours de cette thèse, le doctorant caractérisera les potentiels de surface d'une série de photoanodes (oxydes métallique semiconducteurs activées catalytiquement) en contact avec différents environnements (vide, air à humidité variable, eau) et les corrélera à l'activité photoélectrochimique (PEC). L'activité du doctorant s'articulera autour de quatre axes : i) synthèse de photoanodes par voie chimique ; ii) caractérisation de l'activité photoélectrochimique ; iii) caractérisation par microscopie à force atomique (AFM) corrélée à la microscopie à force de Kelvin (KPFM) ; iv) spectromicroscopies de rayons X synchrotron (STXM, XPEEM) et photoémission à pression ambiante (NAP-XPS). L'étudiant sera accueilli au laboratoire SPEC du CEA-Saclay pendant toute la durée de sa thèse. Ses travaux s'inscrivent dans le cadre d'une collaboration de longue date entre SPEC et SOLEIL.

Analyse multi-modale par résonance magnétique nucléaire in situ des phénomènes électrochimiques dans des prototypes de batteries commerciales

Le développement des technologies de stockage d'énergie électrochimique est impossible sans une compréhension à l'échelle moléculaire des processus tels qu'ils se produisent dans les dispositifs commerciaux pratiques. Certains aspects de la conception des batteries, tels que la composition chimique et l'épaisseur des électrodes, ainsi que la configuration des collecteurs et des languettes de courant, influencent les distributions de densité de courant électronique et ionique et déterminent les limites cinétiques du transport ionique à l'état solide. Ces effets, à leur tour, modulent les performances et la longévité globales des batteries. Pour ces raisons, les résultats des tests de piles boutons conventionnelles ne convergent souvent pas vers des cellules commerciales hautes performances. Les préoccupations de sécurité liées à la forte densité énergétique et aux composants inflammables des batteries constituent un autre sujet crucial pour la conversion des énergies fossiles aux énergies vertes.
La spectroscopie et l'imagerie par résonance magnétique nucléaire (RMN, IRM) sont exceptionnellement sensibles à l'environnement structurel et à la dynamique de la plupart des éléments présents dans les matériaux actifs des batteries.
Récemment, des méthodes de RMN et d'IRM à balayage de surface prêtes à l'emploi ont été introduites. Dans le cadre de la recherche électrochimique fondamentale, la fusion de deux concepts innovants et complémentaires au sein d'un dispositif multimodal (RMN-IRM) permettrait de proposer diverses solutions analytiques et des mesures fiables de la performance des batteries pour le monde universitaire et le secteur de l'énergie.

Ce projet vise à développer un cadre analytique avancé pour l'analyse in situ de phénomènes fondamentaux tels que le transport d'ions à l'état solide, l'intercalation et les transitions de phase associées, la dynamique du placage métallique, la dégradation des électrolytes et les défauts mécaniques dans les batteries Li-ion et Na-ion commerciales, dans diverses conditions de fonctionnement. Une gamme de capteurs multimodaux (RMN-IRM) sera développée et utilisée pour l'analyse approfondie des processus électrochimiques fondamentaux dans les cellules et les petits packs de batteries commerciaux.

Détection ultrarapide par qubits volants électroniques et de Majorana

Une voie émergente pour l’information quantique consiste à utiliser des charges électroniques volantes, comme les excitations électroniques, en tant que qubits.
Ces qubits volants présentent un avantage majeur : l’interaction de Coulomb intrinsèque, permettant des portes logiques à deux qubits et des applications en détection quantique.
Par rapport aux qubits photoniques, ils offrent donc un levier naturel pour dépasser certaines limitations fondamentales.
Leur principal inconvénient réside dans la décohérence rapide, mais cette difficulté peut être atténuée en opérant à des échelles ultrarapides, de l’ordre de la picoseconde.
Une stratégie supplémentaire consiste à exploiter la protection topologique apportée par les modes de Majorana, quasi-particules non-Abéliennes insensibles aux perturbations locales.
Jusqu’ici, la majorité des travaux se sont concentrés sur des modes 0D localisés (aux extrémités de nanofils supraconducteurs), sans démonstrations expérimentales concluantes.
Notre projet de thèse propose une approche nouvelle, fondée sur les modes de Majorana chiraux 1D, constituant une voie vers des qubits volants protégés topologiquement.
L’ambition est de bâtir une plateforme inédite de calcul et de détection quantiques.
Cette plateforme exploitera le graphène multicouche, où peuvent être combinés effet Hall quantique anormal, supraconductivité et modes de Majorana chiraux.

Synthèse et études des propriétés optiques de nanoparticules de graphène

Depuis sa découverte qui a valu le Prix Nobel de Physique à A. Geim et K. Novoselov en 2010, le graphène a provoqué l’engouement de la communauté scientifique. À cause de ces propriétés électroniques, le graphène est vu comme un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, piles à combustible, supercondensateurs).

Pour de nombreuses applications, il convient d’être capable de modifier et de contrôler les propriétés électroniques du graphène. Ceci peut être réalisé grâce à l’apport de la chimie organique. Dans ce sujet, nous proposons de synthétiser des motifs graphéniques en particulier: des nanoparticules de graphène et d’étudier leurs propriétés d’absorption et d’émission dans l’IR. Nous nous intéresserons particulièrement à des familles de nanoparticules allongées dans le but d'étudier comment la taille peut permettre d'observer et contrôler des processus multiexcitoniques dans ces matériaux. Ce projet sera développé en collaboration avec des physiciens, le/la candidat(e) devra donc avoir un gout prononcé pour le travail pluridisciplinaire.

Top