Matériaux topologiques et altermagnétiques: quelle puissance peut-on tirer de l’effet Hall anomal ?
L’argument majeur pour favoriser le développement de l’électronique de spin ainsi que des matériaux topologiques est la faible puissance dissipée lorsque l’on utilise les degrés de liberté de spin et les configurations transverses de type configuration de Hall. En effet, dans le cas d’une phase topologique, on s’attend à ce que le champ magnétique effectif généré ne dissipe pas. Une telle assertion doit cependant faire l’objet d’une description théorique dans le cadre d’un dispositifs électronique réaliste en régime stationnaire. Le but de la thèse est de déterminer la puissance utile de ces dispositifs, dans un étude à la fois expérimentale et théorique.
Dans ce contexte, la définition de la puissance utile est un problème ouvert. En effet, la thermodynamique de ce type de systèmes hors équilibre met en jeu des effets croisés entre les degrés de liberté des porteurs de charges électriques, ceux du spin de ces porteurs, ainsi que ceux de l’aimantation. Les effets croisés hors équilibre sont décrits de façon très générale par les fameuses relations de réciprocité d’Onsager. Nous avons développé une méthode variationnelle permettant d’établir l’état stationnaire d’une barre de Hall et la puissance dissipée dans un circuit de charge, en fonction de la résistance de charge et de l’angle de Hall. Un résultat inattendu prédit l’existence d’un maximum (« maximum power transfer theorem »). Des mesures préliminaires sur la base de l’effet Hall anomal ont récemment validé la prédiction. Cette confirmation expérimentale nous permet d’établir un projet de thèse qui a pour ambition de reproduire les mesures sur un vaste ensemble de matériaux (métaux, semiconducteurs, oxides) et en particulier des matériaux topologiques magnétiques, dit altermagnétiques.
En outre, une étude en résonance ferromagnétique (dit de pompage de spin) mettra en jeu des effets du type thermoélectriques, dont les propriétés dissipatives, mesurées sur un circuit de charge adjacent, restent à déterminer.
Peut-on prédire la météo ou le climat?
D'après l'expérience de chacun, prévoir le temps de manière fiable à plus de quelques jours semble être une tâche impossible pour nos meilleures agences météorologiques. Pourtant, nous connaissons tous des exemples de "dictons météorologiques" qui permettent à de vieux sages de prédire le temps qu'il fera demain sans résoudre les équations du mouvement, et parfois mieux que les prévisions officielles. À plus long terme, les modèles climatiques ont permis de prédire assez précisément la variation de la température moyenne de la Terre due aux émissions de CO2 sur une période de 50 ans.
À la fin des années 50 et 60, Lewis Fry Richardson, puis Edward Lorenz ont jeté les bases de la résolution de cette énigme, en s'appuyant sur des observations, des arguments phénoménologiques et des modèles d'ordre inférieur.
Les progrès actuels des mathématiques, de la physique des turbulences et des données d'observation permettent aujourd'hui d'aller au-delà de l'intuition et de tester la validité de l'effet papillon dans l'atmosphère et le climat. Pour cela, nous utiliserons de nouveaux outils théoriques et mathématiques et de nouvelles simulations numériques basées sur la projection des équations du mouvement sur une grille exponentielle permettant d'obtenir des valeurs réalistes/géophysiques des paramètres, à un coût modéré de calcul et de stockage.
L'objectif de ce doctorat est de mettre en œuvre les nouveaux outils sur des observations réelles de cartes météorologiques, afin d'essayer de détecter l'effet papillon sur des données réelles. À plus long terme, l'objectif sera d'étudier l'hypothèse de "l'universalité statistique", de comprendre si et comment l'effet papillon conduit à des statistiques universelles qui peuvent être utilisées pour les prévisions climatiques, et si nous pouvons espérer construire de nouveaux « dictons météorologiques » en utilisant l'apprentissage automatique, permettant de prédire le climat ou le temps sans résoudre les équations.
Recherche d’oxydes nanostructurés pour la capture du CO2 assistée par robot de synthèse et intelligence artificielle.
L’avènement des synthèses robotisées assistées par intelligence artificielle ouvre des perspectives innombrables pour la découverte de nouveaux nanomatériaux, tout en posant la question de valider correctement ces approches. Le but de cette thèse est de découvrir de nouveaux oxydes nanostructurés pour rendre la capture et la séquestration du CO2 efficace énergiquement. Il s'agira donc de 1) confirmer ou infirmer que la méthode de préparation automatisée (robot mélangeur couplée à une plateforme de caractérisation par diffusion des rayons X et analyse de gaz) est une approche représentative des méthodes de préparation standard, ou si l’automatisation est une nouvelle approche préparative indépendante des méthodes standard, et 2) confirmer ou infirmer que l’exploration du vaste espace de paramètres (nature des oxydes, agents nanostructurants, lois d’injection) permet de dépasser les performances des meilleurs matériaux actuels.
Films minces d’oxynitrures ferroélectriques perovskite à propriétés modulables
Les oxynitrures constituent une classe de composés en plein essor présentant un large panel de propriétés exploitables, en particulier pour les nouvelles technologies de production d'énergie décarbonées. En effet, l'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler la valeur de sa bande interdite ou d’y introduire des états électroniques additionnels et ainsi d'obtenir de nouvelles fonctionnalités et propriétés optiques. La production de films minces monocristallins d’oxynitrure, est cependant un défi important. Dans ce travail de thèse essentiellement expérimental, des films minces d’oxynitrures seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. On démarrera à partir du BaTiO3, dont la synthèse est bien maitrisée au laboratoire, pour réaliser des co-dopages d’azote et de métaux compensateurs de manière à conserver la neutralité de la maille élémentaire. Les structures résultantes seront caractérisées quant à leurs compositions chimiques, structures cristallines et propriétés ferroélectriques. Ces observations seront corrélées à leurs performance pour la photo-électrolyse de l’eau, qui permet de produire de l’hydrogène de manière vertueuse. Enfin, la tenue à la corrosion de ces nouveaux matériaux sera aussi étudiée.
Le (la) candidate abordera un vaste ensemble de techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, la lithographie en salle blanche, des mesures ferroélectriques et de photo-électrolyse de l’eau, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés.
Dispositifs pérovskite pour la production d'hydrogène solaire
La thèse de doctorat fait partie du projet européen ICARUS, qui vise à développer des systèmes efficaces de conversion de l'énergie solaire pour un avenir neutre en carbone. Le projet se concentre sur l'intégration de la séparation de l'eau par voie photoélectrochimique (PEC) et de la production d'énergie photovoltaïque (PV).
Principaux objectifs :
- Développer des cellules solaires pérovskites innovantes à base d'halogénures métalliques avec des bandes interdites accordables pour une plus grande absorption de la lumière.
- Optimiser les cellules solaires imprimées à base de carbone et les échafaudages pour améliorer la conductivité, la résistance mécanique et la durabilité.
- Incorporer des contre-électrodes de carbone innovantes dans les dispositifs pérovskites.
- Augmenter l'échelle et fabriquer des modules solaires.
- Intégrer les modules développés dans un prototype PEC final.
Axes de recherche :
Le candidat au doctorat se concentrera principalement sur :
- Cellules solaires imprimées à base de carbone : Optimisation des propriétés de l'encre, étude du comportement de l'encre conductrice imprimée dans diverses conditions et caractérisation de la conductivité et de la résistance mécanique.
- Dispositifs pérovskites : Incorporation de contre-électrodes innovantes en carbone et évaluation de leurs performances et de leur stabilité.
- Fabrication de modules : Mise à l'échelle et fabrication de modules solaires basés sur les technologies développées.
- Intégration du prototype PEC : Contribuer à l'intégration finale du prototype PEC.
Résultats attendus :
La recherche devrait contribuer au développement de systèmes de conversion de l'énergie solaire hautement efficaces et durables, favorisant la transition vers un avenir neutre en carbone. Les résultats auront des implications pour la recherche universitaire et les applications industrielles.
Magnétorésistances géantes pour la caractérisation locale de l’état magnétique de surface: vers des applications du type Contrôle Non-Destructif (CND)
Thèse Cifre dans le domaine du contrôle non destructif par utilisation de capteurs magnétiques en collaboration entre 3 partenaires :
-le Laboratoire de Nanomagnétisme et Oxyde (LNO) du CEA Paris-Saclay
-le Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon
-l’entreprise CmPhy
La grande majorité des aciers de structure et de construction utilisés par l’industrie du transport, de l’énergie et du bâtiment sont ferromagnétiques. Ces aciers possèdent la propriété de s’aimanter sous l’effet d’un champ externe et de conserver un état magnétique lors de sa disparition.
Les propriétés mécaniques et la microstructure sont des marqueurs forts qui permettent d’anticiper l’état de dégradation de ces pièces en acier. Ces informations qui sont fondamentales en production comme en maintenance peuvent être lues de façon indirecte et non-destructive à travers l’observation du comportement magnétique.
Dans cette thèse, nous proposons de développer des capteurs magnétiques de type magnétorésistance géante (GMR) pour remonter à l’état magnétique de surface et indirectement aux contraintes résiduelles, à la microstructure et au niveau de dégradation.
L’utilisation de l’effet de magnétorésistance géante (GMR), basé sur l’électronique de spin permet de développer des capteurs magnétiques innovants, extrêmement sensibles, détectant des champs magnétiques de l’ordre du nT/vHz. Leur taille peut être submicronique ce qui les rends complètements adaptés à la caractérisation de surface. Leur sensibilité est telle que l’effet du champ magnétique terrestre est suffisant pour induire une réponse magnétique mesurable. Ceci permet d’envisager un CND magnétique allégé ne nécessitant pas d’inducteur pour la génération du champ.
Les deux applications principales associées à cette thèse seront:
• Détection de défauts surfaciques ou sous surfaciques (de l’ordre du mm).
• Détecter des variations micro structurelles locales, des contraintes surfaciques ou des déformations plastiques.
Plusieurs aspects pourront être traités pendant la thèse. Une partie intégration dont le but est d’aller jusqu’à la mise au point d’un démonstrateur (un intérêt pour ce démonstrateur a déjà été signifié par de grands groupes industriels tel que Framatome, EDF, DGA, SAFRAN, etc.). Des mesures sur des échantillons tests et en conditions réelles seront en amont réalisées pour valider la technique. En parallèle, un outil de modélisation pour l’analyse des signaux sera développé afin de comprendre et interpréter les résultats.
La Financement CIFRE proposé repose sur la collaboration de 2 laboratoires académiques (le Laboratoire de Nanomagnétisme et Oxyde (LNO) du CEA Paris-Saclay, spécialiste des capteurs magnétiques et le Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon, spécialiste des matériaux magnétiques et de leur applications) et une entreprise CmPhy, qui conçoit et fabrique des équipements d'analyses et de contrôles CND ainsi que des bancs de caractérisation magnétiques.
Radiothérapie avec électrons à très haute énergie issus d'un accélérateur de champ de sillage laser
Objectifs de la recherche :
Utiliser la modélisation numérique pour optimiser les propriétés des accélérateurs laser-plasma dans la gamme 50 MeV-200 MeV pour la radiothérapie VHEE :
(i) optimiser les propriétés d'un accélérateur laser-plasma (étalement de l'énergie, divergence) avec des faisceaux d'électrons injectés à partir d'un injecteur à miroir plasma en utilisant les codes WarpX et HiPACE++.
(ii) Étudier l'impact de ces faisceaux d'électrons sur l'ADN à l'aide de Geant4DNA.
Cette modélisation numérique sera ensuite utilisée pour guider/concevoir/interpréter des expériences de radiobiologie sur des échantillons biologiques in-vitro qui sont prévues dans notre installation laser interne de 100 TW au CEA pendant le projet. Ces expériences seront réalisées dans le cadre du projet de recherche FemtoDose financé par l'Agence Nationale de la Recherche.
Le chercheur bénéficiera d'une grande variété de formations disponibles au CEA sur le HPC et la programmation informatique, ainsi que de formations chez nos partenaires industriels (ARM, Eviden) et à l'Université Paris Saclay, qui propose des cours de maîtrise en radiobiologie et héberge également un centre de recherche (INanoTherad) dédié aux nouveaux traitements de radiothérapie, réunissant des physiciens, des radiobiologistes et des médecins. Les activités seront menées dans le cadre du réseau doctoral d'action Marie Sklodowska Curie EPACE (European compact accelerators, their applications, and entrepreneurship).
Qubits volants dans le graphène
Les systèmes à l'état solide, actuellement envisagés pour le calcul quantique, sont construits à partir de systèmes localisés à deux niveaux, dont des exemples emblématiques sont les qubits supraconducteurs ou les points quantiques semi-conducteurs. Étant donné qu'ils sont localisés, ils nécessitent une quantité fixe de matériel par qubit.
Les qubits propagateurs ou "volants" présentent des avantages distincts par rapport aux qubits localisés : l'empreinte matérielle dépend uniquement des portes et des qubits eux-mêmes (photons), qui peuvent être créés à la demande, rendant ces systèmes facilement évolutifs. Un qubit qui combinerait les avantages des systèmes localisés et des qubits volants offrirait un changement de paradigme dans la technologie quantique. À long terme, la disponibilité de ces objets ouvrirait la possibilité de construire un ordinateur quantique universel combinant une petite empreinte matérielle fixe et un nombre arbitrairement grand de qubits avec des interactions à longue portée. Une approche prometteuse dans ce sens consiste à utiliser des électrons plutôt que des photons pour réaliser de tels qubits volants. L'avantage des excitations électroniques réside dans l'interaction de Coulomb, qui permet la mise en œuvre d'une porte à deux qubits.
L'objectif de ce doctorat sera le développement de la première plateforme nanoélectronique quantique pour la création, la manipulation et la détection d'électrons volants sur des échelles de temps allant jusqu'à la picoseconde, afin de les exploiter pour des technologies quantiques.
Nouveaux films minces multiferroïques artificiels hybrides à base d’oxynitrures
Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonée, les revêtements de surface pour l’amélioration de la tenue mécanique des aciers ou la protection contre la corrosion ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. Une compréhension fine de ces aspects requiert des matériaux aussi parfaits que possibles. La production de films minces monocristallins correspondants, est cependant un défi important. Dans ce travail de thèse, des films d’oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L’hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroïques artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que de leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques. Ces dernières seront modélisées grâce à des calculs de structure électronique pour parvenir à une description complète de cette nouvelle classe de matériaux.
Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés. Le dichroïsme magnétique des rayons X est particulièrement adapté à cette étude et le projet donnera lieu à une collaboration étroite et/ou un co-encadrement avec la ligne DEIMOS du synchrotron SOLEIL.
Création d’un jumeau numérique du procédé de Spray Pyrolyse en Flamme
Notre capacité à fabriquer des nanoparticules (NP) d'oxyde métallique avec une composition, une morphologie et des propriétés bien définies est une clé pour accéder à de nouveaux matériaux qui peuvent avoir un impact technologique révolutionnaire, par exemple pour la photocatalyse ou le stockage d'énergie. Parmi les différentes technologies de production, les systèmes de Spray Pyrolyse en Flamme (SPF) constituent une option prometteuse pour la synthèse industrielle de NP. Cette voie de synthèse repose sur l'évaporation rapide d'une solution - solvant plus précurseurs - atomisée sous forme de gouttelettes dans une flamme pilote pour obtenir des nanoparticules. Malheureusement, la maitrise du procède de synthèse SPF est aujourd’hui limitée à cause d’une trop grande variabilité de conditions opératoires à explorer pour la multitude de nanoparticules cibles. Dans ce contexte, l'objectif de ce sujet de thèse est de développer le cadre expérimental et numérique nécessaire au déploiement futur de l’intelligence artificielle pour la maitrise des systèmes SPF. Pour ce faire, les différents phénomènes prenant place dans les flammes de synthèse au cours de la formation des nanoparticules seront simulés, notamment au moyen de calculs de dynamique des fluides. Au final, la création d’un jumeau numérique du procédé est attendue, qui permettra de disposer d’une approche prédictive pour le choix des paramètres de synthèse à utiliser pour aboutir au matériau souhaité, ce qui diminuera drastiquement le nombre d’expériences à réaliser et le temps de mise au point de nouvelles nuances de matériaux.