Influence de la densité d'ionisation dans l'eau sur des solutés fluorescents. Application à la Détection de rayonnements alpha

La localisation et l’identification rapide, à distance, des sources d’émission de particules alpha et beta sur les surfaces ou des cavités humides ou dans des solutions, dans des installations nucléaires en démantèlement, ou à assainir, est un véritable enjeu.

Le projet de thèse proposé vise à développer un concept de détection à distance d'une lumière de fluorescence issue de processus de radiolyse de l'eau sur des molécules ou des nano-agents. La caractérisation temporelle par des mesures de durées de vie de fluorescence permettra d’attribuer la détection à un type de rayonnement, dépendant de son transfert d'énergie linéique (TEL). Dans le pic de Bragg des rayonnements alpha où le TEL est maximal, la densité d'ionisation due à ce TEL influence la durée de vie de fluorescence. Cependant, des effets de débits de dose seront aussi à considérer.

Des molécules et nanoparticules candidates à former des produits fluorescents et sensibles à la densité d’ionisation et de radicaux produits dans les traces à temps très courts, seront identifiées par un travail guidé de bibliographie, puis testées et comparées par des mesures. Les mesures spectrales (absorption et fluorescence) et des durées de vie de fluorescence des espèces fluorescentes correspondantes seront réalisées en utilisant la méthode TCSPC (Time Corelated Single Photon Counting) multicanale (16 canaux). Des faisceaux d'ions ou des particules alpha provenant de sources scellées seront utilisés pour faire une preuve de concept dans le cadre du programme CEA assainissement/démantèlement.

Nanostructures Organiques 2D Covalentes par Réticulation Optiquement Contrôlée d’auto-assemblages moléculaires

L’auto-assemblage de molécules sur substrat cristallin permet d’aboutir à des structures 2D non-covalentes présentant des propriétés intéressantes pour différents domaines tels que l’optoélectronique ou les capteurs. La stabilisation de ces réseaux 2D en réseaux covalents est alors un enjeu de taille et un sujet d’actualité. Différentes démonstrations font état de réticulation déclenchée par des processus thermiques. A contrario, la photoréticulation est peu décrite et pour les quelques exemples trouvés, elle est employée dans des conditions d’ultra-vide.

Sur la base du savoir-faire précédemment développé et de l’expertise complémentaire de collaborateurs chimistes, nous nous proposons de mettre en oeuvre une photoréticulation de réseaux 2D à pression atmosphérique. Pour cela, un système modèle d’oligophényles fonctionnalisés pour permettre une photoréticulation et l’obtention d’un réseau 2D covalent sera utilisé. Les réseaux obtenus seront caractérisés en corrélant spectroscopie optique et microscopie à sonde locale pour suivre et mettre en évidence les processus de réticulation photo-induite à l’échelle de la longueur d’onde.

Mise en oeuvre d'une électronique d’acquisition et de traitement continu programmable à des températures cryogéniques

Le sujet de thèse que nous proposons a pour objet de démontrer qu’il est possible d’intégrer à des températures
cryogéniques l’intégralité de la chaîne d’instrumentation permettant de lire et de piloter les composants quantiques, comme
des qubits. En d’autres termes, nous cherchons à placer in-situ, dans le cryostat et au plus près des composants quantiques
(qubits) l’intégralité des systèmes, qui sont aujourd’hui placés à l’extérieur. De plus, afin de réaliser une avancée majeure,
nous visons une chaîne hyperfréquence (> 2 GHz) entièrement programmable. Ce dernier faut l’objet d’une thèse en cours
financée par l’Agence Innovation Défense (AID) et le Commissariat à l’Énergie Atomique (CEA) et d’un dépôt de projet de
type RAPID.

Dans le cadre de ce sujet de thèse, nous commencerons à quelques centaines de MHz. Plusieurs problèmes
principaux sont identifiés et sont à résoudre, parmi lesquels nous citerons :
— conception et intégration de chiplets en System-in-Packages (SiPs) compatibles avec les températures cryogéniques ;
— interfaçage et intégration dans le cryostat des composants Analog to Digital Converter (ADC), Digital to Analog
Converter (DAC) et processeurs de traitement ;
— gérer le débit de données élevés (plusieurs dizaines de Gbit/s par qubit) ;
— latence roundtrip maximum de 200 ns ;
— gestion de l’énergie (quelques dizaines de mW de budget par qubit) ;
— choix des étages cryogéniques adaptés au différents étages de traitements ;
— choix de technologies indépendantes de la nature des objets quantiques manipulés.

Synthèses innovantes de perovzalates et rationalisation du mécanisme de formation par méthodes de synchrotron

Les « perovzalates » sont une nouvelle famille de perovskites hybrides à base d’oxalate, avec une dizaine d’exemples répertoriés depuis 2019 (AILi3MII(C2O4)3 , avec A = K+, Rb+, Cs+, NH4+; M = Fe2+, Co2+, Ni2+). Tout comme les perovskites conventionnelles, elles sont potentiellement intéressantes pour d’innombrables applications (catalyse, optique, solaire etc.), en présentant des avantages supplémentaires liés à l’anion oxalate, qui permet d’incorporer des cations plus volumineux que dans les autres pervovskites hybrides, tout en préservant un structure cristalline semblable aux perovskites d’oxyde.

Cependant, cette classe de nouveaux matériaux est encore à peine explorée, et les synthèses loin d’être maitrisées : les quelques rapports à ce jour produisent systématiquement des mélanges de phases, et portent sur des monocristaux prélevés dans les solutions hétérogènes. Dans ce contexte, la problématique majeure est d’arriver à synthétiser une classe étendue de perovzalates pures.

Cette thèse relève ce défi en exploitant une propriété découverte au laboratoire : la cristallisation des oxalates de métaux par coprécipitation dans l’eau passe par des « émulsions minérales » transitoires, c’est-à-dire des nano-gouttelettes riches en réactifs qui se séparent de l’eau. L’originalité de ce sujet de thèse est d’exploiter la nanostructuration apportée par ces émulsions minérales, et de tester notamment à l’aide de techniques nanotomographiques accessibles en synchrotron si elles permettent de confiner les cations jusqu’à la cristallisation.

Optimisation de la couche catalytique pour l’électroréduction du CO2 intégrée dans un électrolyseur PEM

Ce projet de thèse porte sur l'optimisation de la couche catalytique pour l’électroréduction du CO2 en milieu acide, intégrée dans un électrolyseur à membrane échangeuse de protons (PEM). L’enjeu est de valoriser le CO2 en le convertissant en produits chimiques d’intérêt tel que le monoxyde de carbone. Le milieu acide, inhérent aux électrolyseurs PEM, permet de limiter la formation de carbonates, ce qui améliore l'efficacité de conversion du CO2. Cependant, la réduction du CO2 en milieu acide entre en compétition avec la réaction d’évolution de l’hydrogène, ce qui réduit la sélectivité des produits d’électroréduction. Ce travail vise à développer des catalyseurs sans métaux nobles, inspirés de ceux utilisés pour la réduction de l'oxygène dans les piles à combustible, à améliorer les propriétés des supports carbonés, et à optimiser la mise en forme de la couche catalytique, notamment l’épaisseur, la porosité et l’hydrophobicité, afin de maximiser la conversion du CO2 en molécules d'intérêt. Finalement, la couche active sera intégrée dans un électrolyseur PEM de 16 cm² pour évaluer les performances globales et comprendre les mécanismes mis-en-jeu par des caractérisations électrochimiques.

Nanotubes d'aluminosilicate fonctionnalisés pour la photocatalyse

L'augmentation de la demande en énergie et la nécessité de réduire l’utilisation des combustibles fossiles afin de limiter le réchauffement climatique ont ouvert la voie à un besoin urgent de technologies de collecte d'énergie propre. Une solution intéressante consiste à utiliser l'énergie solaire pour produire des carburants. Ainsi, les matériaux bon marché tels que les semi-conducteurs ont fait l'objet de nombreuses études pour les réactions photocatalytiques. Parmi eux, les nanostructures 1D sont prometteuses en raison de leurs propriétés intéressantes (surfaces spécifiques élevées et accessibles, environnements confinés, transport d'électrons sur de longues distances et séparation des charges facilitées) L'imogolite, une argile naturelle sous la forme d'un nanotubes creux, appartient à cette catégorie. Sa particularité ne vient pas de composition chimique (Al, O et Si) mais de sa courbure intrinsèque qui induit une polarisation permanente de la paroi séparant efficacement les charges photo-induites. Plusieurs modifications de ces matériaux sont possibles (couplage avec des nanoparticules métalliques, fonctionnalisation de la cavité interne), ce qui permet de moduler leurs propriétés. Nous avons fait la preuve de concept que cette argile est un nanoréacteur pour des réactions photocatalytiques (production de H2 et réduction du CO2) sous illumination UV. Afin d'obtenir un photocatalyseur utile, il est nécessaire d'étendre la collecte des photons dans le domaine du visible. Une stratégie envisagée consiste à encapsuler et à greffer de façon covalente des colorants servant d'antenne dans la cavité. L'objectif de cette thèse consiste à synthétiser des imogolites avec différentes fonctionnalisations internes, à étudier l'encapsulation et le greffage de colorants dans la cavité de ces imogolites fonctionnalisées et enfin à étudier les propriétés photocatylitques.

Calcul quantique avec des spins nucléaires

Les spins nucléaires dans les solides font partie des systèmes quantiques ayant les temps de cohérence les plus longs, jusqu'à des minutes, voire des heures, et sont donc des candidats attrayants pour les qubits ; cependant, le contrôle et la lecture des spins nucléaires individuels sont très difficiles. Dans notre laboratoire, nous avons mis au point une nouvelle méthode pour y parvenir. Les qubits de spin nucléaire sont interfacés par un ancilla de spin électronique, auquel ils sont couplés par l'interaction hyperfine. Le spin électronique est ensuite mesuré par comptage de photons à micro-ondes à des températures de l'ordre du millikelvin [1,2]. La lecture d'un seul cliché de spin nucléaire est effectuée par le biais du spin électronique [3], et le contrôle cohérent est obtenu par l'utilisation de transitions Raman micro-ondes [4]. Les spins électroniques sont des ions Er3+ dans un cristal CaWO4, et les spins nucléaires sont des atomes 183W dans la matrice, qui ont un spin 1/2.

[1] E. Albertinale et al., Nature 600, 434 (2021)
[2] Z. Wang et al., Nature 619, 276 (2023)
[3] J. Travesedo et al., arxiv (2024)
[4] J. O'Sullivan et al., arxiv (2024)

Exploration de nanomatériaux à base de diamant pour la (sono)photocatalyse : Applications pour la production d'hydrogène et la réduction du CO2

Les nanodiamants (ND) sont de plus en plus étudiés comme semiconducteurs pour la photocatalyse, notamment grâce aux positions très spécifiques de leurs bandes de valence et de conduction qui peuvent être modulées. Ainsi, il a été récemment démontré que les ND peuvent produire de l’hydrogène sous lumière solaire avec une efficacité similaire à celle des nanoparticules de TiO2. D'autres études montrent également la possibilité de photogénérer des électrons solvatés à partir de certains NDs pour la réduction du CO2 ou la dégradation de polluants tenaces.

Dans l’optique d’accélérer le développement des technologies "solar-to-X" à base de nanodiamants, nous proposons dans le cadre de cette thèse d’intégrer ces derniers en tant que photocatalyseurs dans une approche sonophotocatalytique. En effet, la cavitation acoustique, générée par les ultrasons, peut améliorer le transfert de masse en dispersant les particules catalytiques et permet de produire des espèces réactives additionnelles (radicaux hydroxyles, superoxydes). Elle émet également une sonoluminescence qui peut favoriser la photogénération de charges et devrait limiter la recombinaison des porteurs de charge.

La première phase du travail portera sur la synthèse de photocatalyseurs à base de nanodiamants, en explorant diverses chimies de surface et leur association avec des co-catalyseurs. Des méthodes de synthèse classique et sonochimique seront utilisées, des études préliminaires ayant montré que la sonochimie peut modifier efficacement la chimie de surface des ND. Les propriétés photocatalytiques de ces matériaux seront d'abord évaluées, menant ensuite à la conception d'une cellule sonophotocatalytique . Des études approfondies exploreront les synergies entre sonochimie et photocatalyse pour la production d’hydrogène ou la réduction du CO2. Ce travail de thèse se déroulera dans le cadre d'une collaboration entre le NIMBE situé sur le centre CEA de Saclay et l'ICSM situé sur le centre CEA de Marcoule.

Saumures pour le recyclage des métaux

Les métaux critiques sont essentiels pour différentes technologies indispensables pour réduire nos émissions de dioxyde de carbone. Cependant, le recyclage des métaux contenus dans les déchets électroniques est inférieur à 20 % au niveau mondial, ce gisement de métaux est donc encore sous-exploité. Il est de plus urgent de développer des procédés efficaces pour recycler des déchets comme les panneaux solaires, dont le volume de déchets générés va devenir très important dans les années à venir. Actuellement, les méthodes hydrométallurgiques classiques utilisent des solutions aqueuses souvent toxiques pour dissoudre les métaux, ce qui pose des défis environnementaux conséquents.

Ce projet propose une alternative innovante en utilisant des saumures concentrées (solutions aqueuses de sels), pour oxyder et dissoudre les métaux. Dans ce sujet de thèse, les propriétés fondamentales des saumures et leur capacité à dissoudre des métaux seront étudiées avec différentes méthodes, notamment électrochimiques. Les méthodes d'intelligence artificielle développées au laboratoire seront utilisées pour cribler de nombreuses saumures capables d'améliorer la dissolution de métaux. Dans un second temps, des procédés de recyclage basés sur les saumures seront développés pour recycler les métaux contenus dans les circuits imprimés et les panneaux solaires. Enfin, la séparation des métaux et le traitement des saumures usées sera étudié avec des procédés membranaires et électrochimiques.

Contrôle magnéto-ionique de jonctions tunnel magnétiques pour des applications neuromorphiques

La magnéto-ionique est un domaine émergent qui offre un grand potentiel de réduction de la consommation d'énergie dans les applications de mémoire spintronique grâce au contrôle non-volatile des propriétés magnétiques par l'intermédiaire de tension de grille. En combinant le concept de mouvement ionique contrôlé par tension des technologies memristor, typiquement utilisées dans les applications neuromorphiques, avec la spintronique, ce domaine offre une opportunité unique de créer une nouvelle génération de fonctionnalités neuromorphiques basées sur des dispositifs spintroniques.

Le doctorat sera un projet de recherche expérimentale axé sur la mise en œuvre du contrôle par tension de grille d’effets magnéto-ioniques dans les dispositifs spintroniques à jonction tunnel magnétique. Le but ultime du projet est d'obtenir un contrôle fiable et non volatile de la commutation de l'aimantation dans les jonctions tunnel magnétiques à trois terminaux.
Un défi majeur reste à relever pour l'utilisation de la magnéto-ionique dans des applications pratiques, à savoir son intégration dans les jonctions tunnel magnétiques (MTJ), qui sont les éléments constitutifs des architectures de mémoire magnétique. Cela permettra non seulement de débloquer le contrôle dynamique des champs/courants de commutation dans les jonctions tunnel magnétiques afin de réduire la consommation d'énergie, mais aussi de contrôler la stochasticité, ce qui a des implications importantes dans l'informatique probabiliste.

Top