Magnétorésistances géantes pour la caractérisation locale de l’état magnétique de surface: vers des applications du type Contrôle Non-Destructif (CND)
Thèse Cifre dans le domaine du contrôle non destructif par utilisation de capteurs magnétiques en collaboration entre 3 partenaires :
-le Laboratoire de Nanomagnétisme et Oxyde (LNO) du CEA Paris-Saclay
-le Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon
-l’entreprise CmPhy
La grande majorité des aciers de structure et de construction utilisés par l’industrie du transport, de l’énergie et du bâtiment sont ferromagnétiques. Ces aciers possèdent la propriété de s’aimanter sous l’effet d’un champ externe et de conserver un état magnétique lors de sa disparition.
Les propriétés mécaniques et la microstructure sont des marqueurs forts qui permettent d’anticiper l’état de dégradation de ces pièces en acier. Ces informations qui sont fondamentales en production comme en maintenance peuvent être lues de façon indirecte et non-destructive à travers l’observation du comportement magnétique.
Dans cette thèse, nous proposons de développer des capteurs magnétiques de type magnétorésistance géante (GMR) pour remonter à l’état magnétique de surface et indirectement aux contraintes résiduelles, à la microstructure et au niveau de dégradation.
L’utilisation de l’effet de magnétorésistance géante (GMR), basé sur l’électronique de spin permet de développer des capteurs magnétiques innovants, extrêmement sensibles, détectant des champs magnétiques de l’ordre du nT/vHz. Leur taille peut être submicronique ce qui les rends complètements adaptés à la caractérisation de surface. Leur sensibilité est telle que l’effet du champ magnétique terrestre est suffisant pour induire une réponse magnétique mesurable. Ceci permet d’envisager un CND magnétique allégé ne nécessitant pas d’inducteur pour la génération du champ.
Les deux applications principales associées à cette thèse seront:
• Détection de défauts surfaciques ou sous surfaciques (de l’ordre du mm).
• Détecter des variations micro structurelles locales, des contraintes surfaciques ou des déformations plastiques.
Plusieurs aspects pourront être traités pendant la thèse. Une partie intégration dont le but est d’aller jusqu’à la mise au point d’un démonstrateur (un intérêt pour ce démonstrateur a déjà été signifié par de grands groupes industriels tel que Framatome, EDF, DGA, SAFRAN, etc.). Des mesures sur des échantillons tests et en conditions réelles seront en amont réalisées pour valider la technique. En parallèle, un outil de modélisation pour l’analyse des signaux sera développé afin de comprendre et interpréter les résultats.
La Financement CIFRE proposé repose sur la collaboration de 2 laboratoires académiques (le Laboratoire de Nanomagnétisme et Oxyde (LNO) du CEA Paris-Saclay, spécialiste des capteurs magnétiques et le Laboratoire de Génie Electrique et Ferroélectricité (LGEF) de l’INSA Lyon, spécialiste des matériaux magnétiques et de leur applications) et une entreprise CmPhy, qui conçoit et fabrique des équipements d'analyses et de contrôles CND ainsi que des bancs de caractérisation magnétiques.
Radiothérapie avec électrons à très haute énergie issus d'un accélérateur de champ de sillage laser
Objectifs de la recherche :
Utiliser la modélisation numérique pour optimiser les propriétés des accélérateurs laser-plasma dans la gamme 50 MeV-200 MeV pour la radiothérapie VHEE :
(i) optimiser les propriétés d'un accélérateur laser-plasma (étalement de l'énergie, divergence) avec des faisceaux d'électrons injectés à partir d'un injecteur à miroir plasma en utilisant les codes WarpX et HiPACE++.
(ii) Étudier l'impact de ces faisceaux d'électrons sur l'ADN à l'aide de Geant4DNA.
Cette modélisation numérique sera ensuite utilisée pour guider/concevoir/interpréter des expériences de radiobiologie sur des échantillons biologiques in-vitro qui sont prévues dans notre installation laser interne de 100 TW au CEA pendant le projet. Ces expériences seront réalisées dans le cadre du projet de recherche FemtoDose financé par l'Agence Nationale de la Recherche.
Le chercheur bénéficiera d'une grande variété de formations disponibles au CEA sur le HPC et la programmation informatique, ainsi que de formations chez nos partenaires industriels (ARM, Eviden) et à l'Université Paris Saclay, qui propose des cours de maîtrise en radiobiologie et héberge également un centre de recherche (INanoTherad) dédié aux nouveaux traitements de radiothérapie, réunissant des physiciens, des radiobiologistes et des médecins. Les activités seront menées dans le cadre du réseau doctoral d'action Marie Sklodowska Curie EPACE (European compact accelerators, their applications, and entrepreneurship).
Qubits volants dans le graphène
Les systèmes à l'état solide, actuellement envisagés pour le calcul quantique, sont construits à partir de systèmes localisés à deux niveaux, dont des exemples emblématiques sont les qubits supraconducteurs ou les points quantiques semi-conducteurs. Étant donné qu'ils sont localisés, ils nécessitent une quantité fixe de matériel par qubit.
Les qubits propagateurs ou "volants" présentent des avantages distincts par rapport aux qubits localisés : l'empreinte matérielle dépend uniquement des portes et des qubits eux-mêmes (photons), qui peuvent être créés à la demande, rendant ces systèmes facilement évolutifs. Un qubit qui combinerait les avantages des systèmes localisés et des qubits volants offrirait un changement de paradigme dans la technologie quantique. À long terme, la disponibilité de ces objets ouvrirait la possibilité de construire un ordinateur quantique universel combinant une petite empreinte matérielle fixe et un nombre arbitrairement grand de qubits avec des interactions à longue portée. Une approche prometteuse dans ce sens consiste à utiliser des électrons plutôt que des photons pour réaliser de tels qubits volants. L'avantage des excitations électroniques réside dans l'interaction de Coulomb, qui permet la mise en œuvre d'une porte à deux qubits.
L'objectif de ce doctorat sera le développement de la première plateforme nanoélectronique quantique pour la création, la manipulation et la détection d'électrons volants sur des échelles de temps allant jusqu'à la picoseconde, afin de les exploiter pour des technologies quantiques.
Nouveaux films minces multiferroïques artificiels hybrides à base d’oxynitrures
Les oxydes dopés N et/ou les oxynitrures constituent une classe de composés nouveaux et en plein essor présentant une large gamme de propriétés utilisables, en particulier pour les nouvelles technologies de production d'énergie décarbonée, les revêtements de surface pour l’amélioration de la tenue mécanique des aciers ou la protection contre la corrosion ainsi que pour des capteurs multifonctionnels. Dans ce domaine de recherche, la recherche de nouveaux matériaux est particulièrement souhaitable en raison des propriétés peu satisfaisantes des matériaux actuels. L'insertion d'azote dans le réseau cristallin d'un oxyde semiconducteur permet en principe de moduler sa structure électronique et ses propriétés de transport pour obtenir de nouvelles fonctionnalités. Une compréhension fine de ces aspects requiert des matériaux aussi parfaits que possibles. La production de films minces monocristallins correspondants, est cependant un défi important. Dans ce travail de thèse, des films d’oxynitrures monocristallins seront élaborés par épitaxie par jets moléculaires assistée de plasma atomique. L’hétérostructure multiferroïque combinera deux couches enrichies en azote : une couche ferroélectrique de BaTiO3 dopée N ainsi qu'une ferrite fortement dopée ferrimagnétique dont les propriétés magnétiques pourront être modulées grâce au dopage N pour obtenir de nouveaux matériaux multiferroïques artificiels plus satisfaisants pour les applications. Les structures résultantes seront étudiées quant à leurs caractéristiques ferroélectriques et magnétiques ainsi que de leurs couplages magnétoélectriques en fonction du dopage N. Ces observations seront corrélées à une compréhension détaillée des structures cristallines et électroniques. Ces dernières seront modélisées grâce à des calculs de structure électronique pour parvenir à une description complète de cette nouvelle classe de matériaux.
Le (la) candidate abordera l’ensemble des techniques d’ultra-vide, la croissance par épitaxie par jets moléculaires, des mesures ferroélectriques et de magnétométrie, ainsi qu’un large panel de méthodes de caractérisations basées sur l’exploitation des centres rayonnement synchrotron les plus avancés. Le dichroïsme magnétique des rayons X est particulièrement adapté à cette étude et le projet donnera lieu à une collaboration étroite et/ou un co-encadrement avec la ligne DEIMOS du synchrotron SOLEIL.
Création d’un jumeau numérique du procédé de Spray Pyrolyse en Flamme
Notre capacité à fabriquer des nanoparticules (NP) d'oxyde métallique avec une composition, une morphologie et des propriétés bien définies est une clé pour accéder à de nouveaux matériaux qui peuvent avoir un impact technologique révolutionnaire, par exemple pour la photocatalyse ou le stockage d'énergie. Parmi les différentes technologies de production, les systèmes de Spray Pyrolyse en Flamme (SPF) constituent une option prometteuse pour la synthèse industrielle de NP. Cette voie de synthèse repose sur l'évaporation rapide d'une solution - solvant plus précurseurs - atomisée sous forme de gouttelettes dans une flamme pilote pour obtenir des nanoparticules. Malheureusement, la maitrise du procède de synthèse SPF est aujourd’hui limitée à cause d’une trop grande variabilité de conditions opératoires à explorer pour la multitude de nanoparticules cibles. Dans ce contexte, l'objectif de ce sujet de thèse est de développer le cadre expérimental et numérique nécessaire au déploiement futur de l’intelligence artificielle pour la maitrise des systèmes SPF. Pour ce faire, les différents phénomènes prenant place dans les flammes de synthèse au cours de la formation des nanoparticules seront simulés, notamment au moyen de calculs de dynamique des fluides. Au final, la création d’un jumeau numérique du procédé est attendue, qui permettra de disposer d’une approche prédictive pour le choix des paramètres de synthèse à utiliser pour aboutir au matériau souhaité, ce qui diminuera drastiquement le nombre d’expériences à réaliser et le temps de mise au point de nouvelles nuances de matériaux.
Exploration de la dynamique de dépôt d’énergie aux temps courts d’électrons accélérés par laser dans le cadre de l’effet Flash en radiothérapie
L’objectif du projet de thèse est d’analyser les processus physico-chimiques consécutifs aux débits de dose extrêmes que l’on peut obtenir maintenant dans l’eau avec les impulsions ultra-brèves (fs) d’électrons relativistes accélérés par laser. En effet, des premières mesures montrent que ces processus ne sont probablement pas équivalents à ceux obtenus avec des impulsions plus longues (µs) dans l’effet FLASH utilisé en radiothérapie. Pour y arriver, nous proposons d’analyser la dynamique de formation/recombinaison de l’électron hydraté, espèce emblématique de la radiolyse de l’eau pour qualifier et quantifier l’effet de débit de dose sur des temps de plus en plus courts. Ceci pourra se faire en trois étapes en accompagnement de la progression technologique nécessaire et maintenant accessible, pour avoir une dose par impulsion suffisante pour détecter directement l’électron hydraté. D’abord, avec l’installation existante UHI100 en utilisant la capture de l’électron hydraté en produisant une espèce stable ; puis en produisant une espèce moins stable mais détectable en temps réel et en augmentant le taux de répétition de l’accélérateur laser-plasma. Finalement, en testant un nouveau concept appelé « cible hybride », basé sur l’utilisation d’un miroir plasma comme injecteur d’électrons couplé à un accélérateur laser-plasma. Délivrant des doses plus importantes que les accélérateurs laser-plasma, avec un spectre énergétique resserré, on pourra développer une détection pompe-sonde permettant d’accéder aux temps les plus courts, et à la formation dans les grappes d’ionisation, de l’électron hydraté et en mesurant son rendement initial.
Contrôle de la conversion de l'énergie thermoélectrique par la chimie de coordination des ions de métaux de transition dans les liquides ioniques
La thermoélectricité, la capacité d'un matériau à convertir la chaleur en énergie électrique, est connue dans les liquides depuis plusieurs décennies. Contrairement aux solides, ce processus de conversion dans les liquides prend plusieurs formes, notamment les réactions thermo-galvaniques entre les ions redox et les électrodes, la thermodiffusion d'espèces chargées et la formation d'une double couche électrique aux électrodes qui varie en fonction de la température. Les valeurs observées du coefficient Seebeck (Se = - DV/DT, le rapport entre la tension induite (DV) et la différence de température appliquée (DT)) sont généralement supérieures à 1 mV/K, un ordre de grandeur plus élevé que celles trouvées dans les semi-conducteurs solides. Le premier exemple fonctionnel d'un générateur thermoélectrique (TE) à base de liquide a été rapporté en 1986 en utilisant des sels redox de ferro/ferricyanure dans l'eau. Cependant, dû à la faible conductivité électrique des liquides l’efficacité de conversion était très faible, ce qui empêchait leur utilisation dans des applications de récupération de la chaleur perdue à basse température.
Les perspectives des générateurs TE-liquides se sont améliorés au cours de la dernière décennie avec le développement des liquides ioniques (LI). Les LI sont des sels fondus qui sont liquides en dessous de 100 °C. Par rapport aux liquides classiques, ils présentent de nombreuses caractéristiques favorables telles que des points d'ébullition élevés, une faible pression de vapeur, une conductivité ionique élevée, une faible conductivité thermique et aussi des valeurs de Se plus élevées. Plus récemment, une étude expérimentale menée par l’IJCLab et le SPEC a révélé que la complexation de couples redox de métaux de transition dans des liquides ioniques peut conduire à une hausse de leur coefficient Se significative de -1,6 à -5,7 mV/K, l'une des valeurs les plus élevées rapportées dans les cellules thermoélectriques à base de LI. Une compréhension électrochimique et physicochimique, et un contrôle précis de la spéciation des ions métalliques présentent sont nécessaire pour la conception rationnelle de la future technologie thermo-électrochimique.
Basé sur ces récentes découvertes, nous proposons une étude systématique de la chimie de coordination des ions redox de métaux de transition dans les liquides ioniques et les mélanges combinant des technique électrochimique et thermoélectrique. L’objectif à long terme associé à cette étude est de démontrer le potentiel d'application des cellules thermo-électrochimiques liquides basées sur des matériaux abordables, abondants et sans danger pour l'environnement pour la récupération d'énergie thermique comme outil d'efficacité énergétique.
RMN du Xénon hyperpolarisé pour sonder la fonctionnalité de barrières biologiques
Le pompage optique du xénon, permettant d’obtenir rapidement un signal RMN intense, est une spécialité de l’équipe LSDRM. Le xénon, soluble dans les milieux biologiques, présente une grande gamme de déplacements chimiques, ce nous utilisons ici pour étudier les propriétés de barrières cellulaires. De nombreuses pathologies découlent d'une altération de celles-ci.
Dans ce sujet de thèse nous souhaitons développer une méthodologie spécifique au xénon hyperpolarisé pour étudier la fonctionnalité (intégrité, perméabilité, sélectivité) de barrières biologiques, en spectroscopie et en imagerie in vitro et in vivo. La thèse se déroulera en deux parties : in vitro il s’agira de développer un dispositif et les protocoles RMN permettant d’étudier des assemblages cellulaires modèles; in vivo des études sur rongeurs permettront d’évaluer l’aptitude du xénon à atteindre des organes plus ou moins proches des poumons en gardant sa polarisation, et de mesurer des cinétiques de passage. Ce sujet permettra des avancées instrumentales et méthodologiques majeures, ainsi qu’un approfondissement des connaissances sur les processus de transports sélectifs au niveau de différentes barrières biologiques.
Accumulateurs aux lithium tout solide à base d’électrolyte pyrochlore
Face à l'augmentation de la demande énergétique, il est urgent de concevoir des systèmes de stockage plus performants, qu’ils soient stationnaires ou embarqués. Parmi ceux-ci, les batteries lithium-ion se démarquent comme les plus avancées, capables d’être fabriquées à partir d’électrolytes liquides ou solides. Les batteries tout-solide ont un bel avenir devant elles grâce à leurs électrolytes non inflammables et à leur capacité d’utiliser du lithium métallique pour augmenter la densité d’énergie. Bien que la recherche sur ces batteries donne lieu à une forte compétition internationale, leur commercialisation n’est pas encore une réalité. En effet, deux obstacles importants entravent leur développement : la faible conductivité ionique intrinsèque des solides et la difficulté d’obtenir de bonnes interfaces solides/solides au sein des électrodes composites et du système complet.
Cette thèse vise à développer des batteries tout-solide basée sur une nouvelle classe de matériaux superioniques de type pyrochlore oxyfluorure, qui sont stables à l’air et ont une conductivité ionique supérieure à celle de tous les électrolytes solides oxydes existants. Les propriétés électrochimiques des batteries tout solide seront soigneusement examinées en combinant des techniques in situ et operando (DRX, Raman, analyse par faisceau d'ions/synchrotron, RMN du solide, Tomographie à rayons X…).
Mots clés :
Électrolyte solide, Batterie tout solide, Résonance magnétique nucléaire, Électrochimie, pyrochlore Oxyfluorure, in situ/operando, Spectroscopie, Synchrotron
Synthèse et études des propriétés optiques de nanoparticules de graphène
Depuis sa découverte qui a valu le Prix Nobel de Physique à A. Geim et K. Novoselov en 2010, le graphène a provoqué l’engouement de la communauté scientifique. À cause de ces propriétés électroniques, le graphène est vu comme un matériau de choix pour de très nombreuses applications : électronique/optoélectronique rapide et flexible, électrode ou matériau actif dans le domaine des énergies renouvelables (photovoltaïque, piles à combustible, supercondensateurs).
Pour de nombreuses applications, il convient d’être capable de modifier et de contrôler les propriétés électroniques du graphène. Ceci peut être réalisé grâce à l’apport de la chimie organique. Dans ce sujet, nous proposons de synthétiser des motifs graphéniques en particulier: des nanoparticules de graphène et d’étudier leurs propriétés d’absorption et d’émission dans l’IR. Nous nous intéresserons particulièrement à des familles de nanoparticules allongées dans le but d'étudier comment la taille peut permettre d'observer et contrôler des processus multiexcitoniques dans ces matériaux. Ce projet sera développé en collaboration avec des physiciens, le/la candidat(e) devra donc avoir un gout prononcé pour le travail pluridisciplinaire.