Model reduction in dynamics : application to earthquake engineering problems
The complexity and refinement of the numerical models used to predict the behavior of structures under seismic loading often impose computation times of several days for solving the partial differential equations of the reference problem.
Furthermore, in the context of optimization , model identification, or parametric and stochastic analyses, the aim is not to predict the response of a unique model but of a family of models.
To reduce the computation time, model reduction techniques (Proper Orthogonal/Generalized Decomposition) may be considered. This post-doctoral study proposes to define and implement (especially in the FE code CAST3M) a technique suitable for the reduction of reinforced concrete type models subjected to seismic loading.
Large-scale depletion calculations with Monte Carlo neutron transport code
One of the main goals of modern reactor physics is to perform accurate multi-physics simulations of the behaviour of a nuclear reactor core, with a detailed description of the geometry at the fuel pin level. Multi-physics calculations in nominal conditions imply a coupling between a transport equation solver for the neutron and precursor populations, thermal and thermal-hydraulics solvers for heat transfer, and a Bateman solver for computing the isotopic depletion of the nuclear fuel during a reactor cycle. The purpose of this post-doc is to carry out such a fully-coupled calculation using the PATMOS Monte Carlo neutron-transport mini-app and the C3PO coupling platform, both developed at CEA. The target system is core of the size of a commercial reactor.
Simulation of reactive gas-liquid multi-phase flows
The objective of this postdoctoral position is to develop and implement a simulation method for the simulation of a
sodium spray fire. Two key points need to be adressed. First, one needs to propose a proper representation of the sodium
droplets (dispersed phase) from their generation by a jet (separate phase) fragmentation to their behavior (motion,
oxidation, combustion) in the air atmosphere. This requires to derive a flow model that accounts for multiple components
with multiple interface topology regimes (dispersed and separate). Second, one needs to develop a robust discretization
strategy for this complex flow model.
The numerical work will be implemented in a new numerical tool to perform simulations of sodium spray fires developed at CEA. This tool is based on the canoP. Canop is a library designed for solving computational fluid dynamics problems using a cell-based
Adaptive Mesh Refinement (AMR) approach and parallel calculation.
Robust path-following solvers for the simulation of reinforced concrete structures
Path-following procedures are generally employed for describing unstable structural responses characterized by ``snap-backs'' and/or ``snap-troughs''. In these formulations, the evolution of the external actions (forces/displacements) is updated throughout the deformation process to fulfill a given criterion. Adapting the external loading during the calculation to control the evolution of the material non-linearities is helpful to obtain a solution and/or to reduce the number of iterations to convergence. This second aspect is of paramount importance, especially for large calculations (at the structural scale). Different path-following formulations were proposed in the literature. Unfortunately, an objective criterion for choosing one formulation over another for the simulation of reinforced concrete (RC) structures (in the presence of different and complex dissipation mechanisms) still needs to be made available. The proposed work will focus on the formulation of path-following algorithms adapted to simulate RC structures.
ACCELERATING a DSN SWEEP KERNEL ALGORITHM FOR NEUTRONICS BY PORTING ON GPU.
In the framework of the Programmes Transversaux de Compétences (PTC or literally Cross-XXX Programme), the DES/ISAS/DM2S/SERMA/LLPR and the CEA-DIF are both working on the porting of deterministic neutron transport codes on GPU.
The DM2S within the Energies Direction (DES) is responsible for research and development activities on the numerical methods and codes for reactor physics, amongst which the APOLLO3® code. The neutronics laboratory of CEA-DIF is responsible for developing tools for deterministic methods in neutronics for the Simulation programme.
These two laboratories are actively preparing for the advent of new generation of supercomputers where GPU (Graphical Processing Units) will be predominant. Indeed, the underlying numerical problems to be solved along with the working methodology as well as the conclusions and experience which will be obtained from such studies may be rationalised between both laboratories. Thus, this work has given rise to this postdoctoral position which will be common to both teams. The postdoctoral researcher will be formally based at SERMA at CEA Saclay, with nevertheless regular meetings with the CEA-DIF scientists.
The postdoctoral research work is to study the acceleration of a toy model of a 3D discrete ordinates diamond-differencing sweep kernel (DSN) by porting the code on GPU. This work hinges on porting experiments which have previously been carried by both teams following two different approaches: a ‘’high-level’’ one based on the Kokkos framework for DES and a ‘’low-level’’ approach based on Cuda for CEA-DIF.
Neutronic thermal-hydraulic coupling in heterogeneous Sodium Cooled Fast Reactor (SCFR)
Within the frame of ASTRID (Sodium cooled Fast Reactor) prototype development, update of calculation methodologies using new generation of codes benefiting from High Performance Computing (HPC) and advanced coupling capabilities is underway. These methods are expected to be integrated in ASTRID safety demonstration. In particular, development of coupled neutronics/thermal-hydraulics/fuel mechanics methodologies during accidental transients is underway.
Coupling Neutronics and thermal-hydraulics in double phase flow conditions (either sodium + vapor sodium or sodium + other gaz) can be used for:
• Loss of Flow transients (LOF, sodium + vapor sodium)
• Gas insertion transients.
This coupling is of special interest with cores strongly relying on axial leakage for safety consideration (like CFV cores [ICAPP11]).
The work proposed is to further develop the implementation of 3D coupling with state of the art CEA codes (APOLLO3, FLICA, CATHARE, TRIO etc.) to analyze the two type of transients stated above.