Study and modeling of fiber Bragg grating acoustic receivers

CEA List has been working for several years on the development of advanced monitoring solutions using fibre optic acoustic receivers called Fiber Bragg Gratings. These optical sensors have a great potential for structural health monitoring, both because of their ability to be integrated into materials (concrete, organic composites, metal) and because of their ability to be deployed in severe environments (embedded, radiative, high temperature).
A post-doctoral work is proposed to carry out modelling of these Fiber Bragg Grating transducers in order to refine the understanding of their sensitivity to ultrasonic guided elastic waves and to help in the design of an associated control system thanks to an intelligent placement of the sensors. Ultimately, the aim is to be able to simulate their response within the Civa non-destructive testing software developed by CEA List, and more particularly via its module dedicated to Structural Health Monitoring (SHM). Such work would strongly contribute to the adoption and exploitation of this technology for Structural Health Monitoring applications.

Environmental dosimetry: study, design and implementation of a calibration facility for low dose equivalent rates

In order to meet the calibration needs of the European radioactivity monitoring network, the Laboratoire national Henri Becquerel, part of CEA List, is installing a calibration facility for low dose equivalent rates, below 1 µSv/h. The work includes a study of the performance of the existing radiation beams and the design, installation and dosimetric characterization of a shielded facility to reduce the radiative background, in which low activity photon sources will be installed.

Development of a modular multi-detector instrumentation for the measurement of atomic and nuclear parameters

The LNE PLATINUM project (PLATFORM OF MODULAR NUMERICAL INSTRUMENTATION) aims to develop a modular platform, in order to test new instrumentation using two or more detectors in coincidence. The principle implemented in this project is based on the simultaneous detection of interactions taking place in two different detectors, by collecting information on the type of particle and its energy (spectroscopy). This principle is the basis for absolute measurements of activity or active continuous background reduction systems to improve detection limits. But it also allows the measurement of parameters characterizing the decay scheme, such as internal conversion coefficients, X-ray fluorescence yields or angular correlations between photons emitted in cascade.

Thanks to its expertise in atomic and nuclear data, the LNHB has noted for many years the incompleteness of decay schemes for certain radionuclides. These schemes, established at the time of evaluation from existing measured data, sometimes present inconsistencies or poorly known transitions, in particular in the presence of highly converted gamma transitions or very low intensity (for example, recent studies on 103Pa, 129I and 147Nd have revealed such inconsistencies). It therefore appears important for LNHB to better master the technique of coincidence measurement, taking advantage of the new possibilities in terms of data acquisition and time stamping to provide additional information on decay scheme and contribute to their improvement.

Fast-scintillator-based device for on-line FLASH-beam dosimetry

New cancer treatment modalities aim to improve the dose delivered to the tumor while sparing healthy tissue as much as possible. Various approaches are being developed, including the temporal optimization of the dose delivered with very high dose rate irradiation (FLASH).
In this particular case, recent studies have shown that FLASH irradiation with electrons was as effective as photon beam treatments for tumor destruction while being less harmful to healthy tissue. For these beams, the instantaneous doses are up to several orders of magnitude higher than those produced by conventional beams. Conventional active dosimeters saturate under irradiation conditions at very high dose rates per pulse, therefore on-line dosimetry of the beam is not possible.
We propose to develop a dosimeter dedicated to the measurement of beams in FLASH radiotherapy based on an ultra-fast plastic scintillator coupled with a silicon photomultiplier sensor (SiPM). The novelty of the project lies both in the chemical composition of the plastic scintillator which will be chosen for its response time and its wavelength emission to have a response adapted to the impulse characteristics of the beam, and in the final sensor with the possibility of coupling the plastic scintillator to a miniaturized SiPM matrix.
The final goal is to be able to access, with a reliable methodology, the dosimetry and in-line geometry of FLASH beams.

Design for reliability for digital circuits

Flash memories are a key enabler for high-temperature applications such as data acquisition and engine control in aerospace, automotive and drilling industries. Unfortunately, the retention time of flash memories is very sensitive to high temperatures. Even at relatively moderated temperatures, flash memories may be affected by retention-related problems especially if they are set to store more than one bit per cell. This impact can be mitigated by periodically refreshing the stored data. The problem is that, in the presence of a variable operating temperature that could be due to variable environmental and workload conditions, a fixed data-refresh frequency may become disproportionately large with a subsequent impact on response time and cycling endurance.

The first objective of this project is to implement a data-refresh method based on a specially designed counter that is able to (a) track the evolution of the temperature and its impact on the data retention time of Flash memory blocks, (b) trigger warnings against potential retention time hazards and (c) provide timestamps.

The second objective is to find the distribution law that gives the evolution of the number of data retention errors in time. The goal is to implement a methodology able to infer the remaining retention time of flash memory pages based on their data retention age, i.e., the elapsed time since data was stored, and the number of retention and non-retention errors.

The publication of the scientific results in high-ranked conferences and journals is major project objective.

Development of femtosecond Fiber Bragg Grating acoustic receivers for the Structural Health Monitoring using passive acoustic tomography

The proposed post-doctoral fellowship is part of a transverse project initiated by the CEA and which consists in developing a prototype of a continuous monitoring system of a metallic structure (pipe for example) using fiber Bragg gratings acoustic receivers and passive imaging (or passive tomography). It aims to demonstrate the relevance of the SHM (Structural Health Monitoring) concept for nuclear facilities using optical fiber sensors operating in continuous and in extreme environment. This project is based on two recent developments: new generation of fiber Bragg gratings developed for severe environments and defect imaging algorithms based on ambient noise analysis. A demonstration of elastic wave reconstruction from passive algorithm applied to fiber Bragg gratings was carried out at the CEA in 2015, which is a world first, patented. The project aims more particularly to produce a demonstrator and to equip a pipeline on a test loop. It will provide input data relating to the ability of a moving fluid to generate elastic waves that can be analyzed in passive tomography.

Developpment of a control quality method for radiotherapy treatments based on dosimetric gels

In the field of dosimetry for radiotherapy, chemical dosimetry, and in particular gel dosimeters, are good candidates for dose distribution measurements for the quality control of treatment plans. Actually, these gels are radiosensitive and, thus, enable measurements of the dose in 3 dimensions when read by adapted imaging methods.

This post-doctoral project deals with the development of gel dosimetry methods, using two types of reading devices: Optical tomography and Magnetic Reading Imaging. For gel-MRI dosimetry, the aim will be to adapt and validate the method used at LNHB (Laboratoire National Henri Becquerel) for quality control applications for MR-guided-radiotherapy devices. For this purpose, specific phantoms will have to be designed and produced using 3D printing. The reading method will also have to be optimized and transposed on partnering hospital devices.

Concerning the gel-optical CT dosimetry method, the whole method will have to be developed. This involves an adaptation of the composition for the gel, a characterization of the reading device and a validation of the method established.

New reference radiation field for radioprotection in the range of Cs-137 et Co-60 using an electrostatic electron accelerator

During the last years, LNHB has started and realized a research program in order to produce a reference photon radiation field for the radioprotection needs at high energies (~6 MeV) using its medical electron accelerator Saturne 43. For this purpose, a target and its appropriate flattering-attenuating filter have been designed by LNHB in order to produce the required photon field.

Nowadays there is no existing device able to produce radiation fields from an accelerator in the Cs-137 and Co-60 equivalent energy range. In order to achieve this, one needs the technology to construct and properly use absolute dosemeters for photons (cavity ionization chambers), to determine the right target-filter assembly allowing the production of the required photon field and to accurately calculate the conversion factors from air-kerma to operational quantity which is the dose-equivalent using the spectral distribution at the calibration position.

The candidate will participate in the construction of cavity ionization chambers needed for the characterization in terms of dose-equivalent of radiation field obtained from the electron accelerator and to the on-site measurements. He(She) will also be in charge with Monte-Carlo simulations in order to optimize the target-filter assembly used to produce the reference photon field from an electrostatic accelerator.

Construction of databases for radionuclide identification based on neural networks (NANTISTA project)

The project NANTISTA (Neuromorphic Architecture for Nuclear Threat Identification for SecuriTy Applications) deals with the prevention of illegal traffic of nuclear materials at international borders. The project aims at the development of a detection platform using plastic scintillators for fast radionuclide identification (such as fissile materials) based on neural networks. The post-doctoral subject consists in the development of the detection system and the construction of databases dedicated to the learning process and the optimization of the neural networks. The databases will be built with experimental measurements given by radioactive sources. Radiation-matter simulations (Monte-Carlo codes Geant4 and Penelope) will also be implemented for the construction of the databases.

Distributed optimal planning of energy resources. Application to district heating

Heating district networks in France fed more than one million homes and deliver a quantity of heat equal to about 5% of the heat consumed by the residential and tertiary sector. Therefore, they represent a significant potential for the massive introduction of renewable and recovery energy. However, heating networks are complex systems that must manage large numbers of consumers and producers of energy, and that are distributed in extended and highly branched geographical zones. The aim of the STRATEGE project, realized in collaboration among the CEA-LIST and the CEA-LITEN, is to implement an optimal and dynamic management of heating networks. We propose a multidisciplinary approach, by integrating the advanced network management using Multi-Agent Systems (MAS) and by considering simplified physical models of transport and recovery of heat developed on Modelica.
The post-doc’s goal is to design mechanisms of planning and optimization for allocation of heat resources that consider the geographical information from a GIS and the predictions of consumption, production and losses calculated with the physical models. In this way, several characteristics of the network will be considered: the continuous and dynamic aspect of the resource; sources with different behaviors, capabilities and production costs; the dependence of consumption/production to external aspects (weather, energy price); the internal characteristics of the network (losses, storage capacity). The developed algorithms will be implemented in a existing MAS management plateform and will constitute the main brick of a decision-support engine for the management of heating systems. It will initially operate in a simulated environment and in a second time online on a real system.