Development of new processes for the fabrication of advanced interconnect structures of solar cells

The fabrication of solar cells with high performances at a reduced cost is a key challenge addressed by many research institutions and industrials worldwide. Many technological solutions are being investigated. Among them, a promising approach consists in forming narrower metal lines to limit shadowing of active areas of the cells. This work aims at replacing serigraphy by new fabrication processes able to reduce line width. For this purpose, the conducting substrate is coated by an insulating mask in which the lines are defined. The metal is then directly plated selectively onto the weakly conducting portions of the substrate, i.e. the lines, using electrolytic or electroless reactions. The process conditions will be adapted with regard to the nature of the initial conducting surfaces.

Minimizing modifications at III-V pattern sidewalls after plasma etching for heterointegrated optoelectronics and nonlinear photonics

This project will focus on understanding plasma-induced damage at the sidewalls of micro-nano-patterned III-V semiconductors to find relevant technological solutions capable to minimize this damage. There is a clear need of knowledge on by which mechanisms and to what extent the plasma etching process modifies the III-V pattern sidewalls and the consequences it has on the device optical performances. The selected III-V semiconductor will be aluminium gallium arsenide which exhibits excellent optoelectronic properties and strong nonlinear parametric gain.
The student will be mainly focused on understanding how the key plasma process parameters influence the structural and chemical changes at the III-V sidewalls, as well as changes of optical properties. This will require the development of a methodology for a 3D quantitative characterization of the sidewalls at the nanoscale, based on Auger microscopy and cathololuminescence. The main objective will be to correlate plasma-induced structural defects and modifications of the optoelectronics properties. The second step will consist in developing optimized plasma etching processes for III-V semiconductors, exploring alternative plasma technologies. You will also be involved in the development of processes for restoring and passivating the AlGaAs sidewalls.

Correlative X-ray and ToF-SIMS tomography Data fusion of 3-D data sets from X-ray and ToF-SIMS tomography

The nanocaracterisation platform of the CEA Grenoble has recently installed 2 state-of-the-art tools for 3-D imaging with 100 nm resolution: X-ray tomography in a SEM and time of flight secondary ion mass spectrometry (ToF-SIMS) assisted by focused ion milling (FIB). X-ray tomography delivers non-invasive 3-D images of the internal morphology of an object whilst ToF-SIMS is able to map the local composition in 3-D. We aim to combine the two techniques to perform quantitative 3-D investigations of objects such as copper pillars for microelectronics or silicon electrodes for Li battery applications.
The proposed research subject is data analysis orientated. Some simulation work may be performed to implement and test existing 3-D data fusion methods with a view to adapting and improving them. The candidate will assist with the experimental measurements and be responsible for treating the data with the chosen protocols. The candidate should be pragmatic, at ease with applied mathematics and have good programming skills. These will be essential in understanding and manipulating the fusion and reconstruction algorithms, from the simplest, to the increasingly advanced (prior information, superiorisation, Bayesian fusion)
The candidate will have completed a PhD in physics and have good computer (Python, Matlab, C) and image treatment skills, or a PhD in mathematics/computational science with an interest in applications. The candiate will need to interface with a multidisciplinary team, and be receptive to new ideas. The candidate will be proficient in both written and spoken English in order to communicate with the team and to disseminate their results in articles or at conferences.

Development of new processes for the fabrication of advanced interconnect structures of solar cells

The fabrication of solar cells with high performances at a reduced cost is a key challenge addressed by many research institutions and industrials worldwide. Many technological solutions are being investigated. Among them, a promising approach consists in forming narrower metal lines to limit shadowing of active areas of the cells. This work aims at replacing serigraphy by new fabrication processes able to reduce line width. For this purpose, the conducting substrate is coated by an insulating mask in which the lines are defined. The metal is then directly plated selectively onto the weakly conducting portions of the substrate, i.e. the lines, using electrolytic reactions. The process conditions will be adapted with regard to the nature of the initial conducting surfaces.

Silicon nanowire elaboration for microelectronic applications

In order to realize high capacity integrated capacitor, one approach consists in developing electrode with high specific surface. In this work, we propose to perform capacitor integrating silicon nanowires. The first part of this study will be devoted to the understanding and to the optimization of Si nanowires CVD growth process. In parallel, properties of nanowires obtained by electrochemical silicon etching will be assessed and will be compared to CVD nanowires characteristics. According to the electrical performances, different strategies (metallization Silicuration…) will be envisaged in order to enhance their electrical conductivity.

Top