Modeling of the MADISON fuel irradiation device for the future JHR reactor

The Jules Horowitz Reactor (RJH), currently under construction at CEA's Cadarache site, will irradiate materials and fuels in support of the French and international nuclear industry, as well as producing radioelements for medical use. To carry out its missions, the reactor will be equipped with numerous experimental devices. In particular, the MADISON device, currently under design, will irradiate 2 or 4 fuel samples under nominal stationary or operational transient conditions. The loop is representative of light-water reactor operating conditions, with single-phase and two-phase forced convection.
The main objective of the Post-Doc is to model the MADISON device and all associated heat exchanges precisely, in order to help determine the overall heat balance during the test and thus improve the accuracy of the linear power imposed on the samples. To this end, a coupled thermal model (describing the fuel rods and device structures) / CFD thermal-hydraulic model (describing the coolant) will be established using the NEPTUNE_CFD/SYRTHES code. The modeling will be validated based on results obtained from similar modeling carried out on the ISABELLE-1 and ADELINE single-rod devices in the OSIRIS and RJH reactors. The proposed approach fits in with the logic of developing digital twins of the RJH experimental devices.

Selenium 79 quantification in nuclear waste

Accurate assessment of the inventory of long-lived radionuclides represents a major challenge for nuclear sites. Selenium 79 is one of the seven main long-lived fission products, but very few actual measurements of 79Se in real samples are reported in the literature. Its measurement is difficult due to its low concentration in spent fuel.
The main goal of this post-doctoral project is to develop an analytical protocol for lowering the detection limit (below ng/L) for 79Se in nuclear waste, and more specifically in the zircaloy cladding of spent fuel.
The candidate will be responsible for sample preparation, establishing protocols for the separation of selenium by ion exchange chromatography, development of an ICP-MS/MS measurement method to eliminate interferences and achieve the best possible sensitivity, interpretation of the results as well as their presentation at scientific conferences and publication in peer-reviewed journals.
The post-doctorate is initially financed for one year, but may be extended for a further year to develop the measurement of 107Pd and 126Sn.

Calculation of the thermal conductivity of UO2 fuel and the influence of irradiation defects

Atomistic simulations of the behaviour of nuclear fuel under irradiation can give access to its thermal properties and their evolution with temperature and irradiation. Knowledge of the thermal conductivity of 100% dense oxide can now be obtained by molecular dynamics and the interatomic force constants[1] at the single crystal scale, but the effect of defects induced by irradiation (irradiation loop, cluster of gaps) or even grain boundaries (ceramic before irradiation) remain difficult to evaluate in a coupled way.
The ambition is now to include defects in the supercells and to calculate their effect on the force constants. Depending on the size of the defects considered, we will use either the DFT or an empirical or numerical potential to perform the molecular dynamics. AlmaBTE allows the calculation of phonon scattering by point defects [2] and the calculation of phonon scattering by dislocations and their transmission at an interface have also recently been implemented. Thus, the chaining atomistic calculations/AlmaBTE will make it possible to determine the effect of the polycrystalline microstructure and irradiation defects on the thermal conductivity. At the end of this post-doc, the properties obtained will be used in the existing simulation tools in order to estimate the conductivity of a volume element (additional effect of the microstructure, in particular of the porous network, FFT method), data which will finally be integrated into the simulation of the behavior of the fuel element under irradiation.
The work will be carried out at the Nuclear Fuel Department of the CEA, in a scientific environment characterised by a high level of expertise in materials modelling, in close collaboration with other CEA teams in Grenoble and in the Paris region who are experts in atomistic calculations. The results will be promoted through scientific publications and participation in international congresses.
References:
[1] Bottin, F., Bieder, J., Bouchet, J. A-TDE

Application of the Hybrid-High-Order (HHO) method for the treatment of non-local effects in crystal plasticity via a micromorph approach

Describing the behavior of materials at the crystalline scale is the subject of much academic research, and is of growing interest in industrial R&D studies. Classically, this description is based on behavior laws describing the local evolution of the material's microstructural state: (visco-)plastic deformation, dislocation density, etc.

The main driving force behind this evolution is resolved shear stress, the projection of the stress tensor on the slip systems.

The formalism of these local constitutive equations (as opposed to non-local constitutive
equations discussed hereafter) is now well established, whether we are considering
infinitesimal or finite transformations, and benefits from special support within the MFront code generator. Thanks to MFront, those constitutive equations can be used in various mechanical solvers at CEA (Manta, Cast3M , Europlexus , AMITEX_FFTP ) and EDF
(code_aster, Manta, Europlexus ).

However, the use of local constitutive equations does not allow to account for many effects.

The aim of the post-doc is to develop a robust numerical strategy for reliably solving
structural problems using non-local crystal plasticity laws, and guaranteeing the
transferability of the constitutive equations between the CEA and EDF codes.

Top