TREATMENT OF RADIOACTIVE ORGANIC EFFLUENTS

The ECCLOR project (Project labelled 'Investment for the Future') aims to find a management route for challenging radioactive organic effluents. A strategy under investigation is to make the effluents compatible with existing outlets by decontaminating them of radioelements by column filtration. This involves developing ion-selective extractants in a form suitable for use in columns.
Studies are being carried out at CEA to improve the treatment of radioactive aqueous effluents by developing processes capable of achieving "zero discharge" while producing a minimum of waste. The challenge of the ECCLOR project will be to transpose this work to contaminated organic solvents with various radiological compositions and rheological properties. A first post-doctoral contract was dedicated to the development of materials for this application. A number of inorganic supports (silicas, geopolymers, aluminas, etc.) were considered for decontaminating these organic effluents.
The performance of the various materials developed in previous work can be optimised in terms of actinide capacity and selectivity with respect to competitor ions. In particular, the performance of existing materials needs to be studied further on more complex simulated LORs, with the necessary adaptations to the analytical method.
This project is intended for a post-doctoral fellow wishing to develop skills in extraction mechanism comprehension and analytical methods, with an interest in advancing the field of radioactive waste management. It will be will build upon the expertise of two laboratories at CEA Marcoule: the Design and Characterization of Mineral Materials Laboratory for materials elaboration and characterization, and the Supercritical and Decontamination Processes Laboratory for materials grafting and decontamination experiments.

Atomic-Scale Study of Dislocation-Point Defect Interaction in UO2 Fuel

Uranium dioxide (UO2) is the primary fuel used in pressurized water reactors (PWRs). Under normal operating conditions and irradiation, the mechanical and microstructural behavior of UO2 evolves due to the accumulation of point defects (vacancies, interstitials, defect clusters) generated by nuclear fission events. These defects alter the thermo-mechanical behavior of the material, particularly through their interaction with dislocations, thereby influencing plasticity, stress relaxation, and ultimately, fuel integrity.
A detailed understanding of the elementary mechanisms governing these interactions is essential for improving the modeling of irradiated fuel mechanical behavior. In particular, the impact of point defects on dislocation mobility remains a key challenge in refining the constitutive laws used in the multi-scale simulation tools of the PLEIADES platform, which is dedicated to predicting fuel behavior under various operating conditions (nominal, transient, and accidental scenarios).
The objective of this study is therefore to analyze, at the atomic scale, the interactions between dislocations and point defects in UO2 in order to quantify their influence on the fundamental plasticity mechanisms. To this end, molecular dynamics calculations will be performed to investigate the effect of different types of point defects (e.g., Frenkel pairs) on dislocation mobility, considering key parameters such as temperature and applied stress. This work will enable the extraction of dislocation mobility laws in the presence of defects, which will serve as input data for micromechanical models used in larger-scale simulations, particularly those implemented in the PLEIADES platform.

Development of a new generation of reversible polymer adhesives

Polymeric adhesives are generally cross-linked systems used to bond two substrates throughout the lifetime of an assembly, which may be multi-material, for a wide range of applications. At their end of life, the presence of adhesives makes it difficult to separate materials and recycle them. Moreover, it is difficult to destroy the cross-linking of the adhesives without chemical or thermal treatment that is also aggressive for the bonded substrates.
In this context, the CEA is developing adhesives with enhanced recyclability, by integrating recyclability into the chemical structures right from the synthesis of the polymer networks. The first approach involves incorporating dynamic covalent bonds into polymer networks, which can be exchanged under generally thermal stimulus (e.g. vitrimers). A second approach involves synthesising polymers that can be depolymerised under a specific stimulus (self-immolating polymers) and have the ability to cross-link.

The post-doc will develop 2 networks that can be used as adhesives with enhanced recyclability. A first network will be based on a depolymerizable chemistry under stimulus already developed on linear polymer chains, to be transposed to a network. A second vitrimer network will be synthesised on the basis of previous work at the CEA. Activation of the bond exchange in this network will take place via a so-called photolatent catalyst, which can be activated by UV and will make it possible to obtain a UV- and heat-stimulated adhesive. The choice and synthesis of these catalysts and their impact on the adhesive will be the focus of the study. The catalysts obtained could also be used to trigger depolymerisation of the first depolymerisable system under stimulus.

Impact of Microstructure in Uranium Dioxide on Ballistic and Electronic Damage

During reactor irradiation, nuclear fuel pellets undergo microstructural changes. Beyond 40 GWd/tU, a High Burnup Structure (HBS) appears at the pellet periphery, where initial grains (~10 µm) fragment into sub-grains (~0.2 µm). In the pellet center, under high temperatures, weakly misoriented sub-grains also form. These changes result from energy loss by fission products, leading to defects such as dislocations and cavities. To study grain size effects on irradiation damage, nanostructured UO2 samples will be synthesized at JRC-K, using flash sintering for high-density pellets. Ion irradiation experiments will follow at JANNuS-Saclay and GSI, with structural characterizations via Raman spectroscopy, TEM, SEM-EBSD, and XRD. The postdoc project will take place at JRC-K, CEA Saclay, and CEA Cadarache under expert supervision.

Modeling of the MADISON fuel irradiation device for the future JHR reactor

The Jules Horowitz Reactor (RJH), currently under construction at CEA's Cadarache site, will irradiate materials and fuels in support of the French and international nuclear industry, as well as producing radioelements for medical use. To carry out its missions, the reactor will be equipped with numerous experimental devices. In particular, the MADISON device, currently under design, will irradiate 2 or 4 fuel samples under nominal stationary or operational transient conditions. The loop is representative of light-water reactor operating conditions, with single-phase and two-phase forced convection.
The main objective of the Post-Doc is to model the MADISON device and all associated heat exchanges precisely, in order to help determine the overall heat balance during the test and thus improve the accuracy of the linear power imposed on the samples. To this end, a coupled thermal model (describing the fuel rods and device structures) / CFD thermal-hydraulic model (describing the coolant) will be established using the NEPTUNE_CFD/SYRTHES code. The modeling will be validated based on results obtained from similar modeling carried out on the ISABELLE-1 and ADELINE single-rod devices in the OSIRIS and RJH reactors. The proposed approach fits in with the logic of developing digital twins of the RJH experimental devices.

MOF passivation of tandem silicon/perovskite photovoltaic devices

In order to improve the stability of devices in operation, we plan to integrate Metal Organic Frameworks from different sources into Si/PVK tandem solar cells, to characterize materials modifications with different techniques (XRD, SEM, Photoluminescence, etc…) and to make aging studies of full devices following last recommended standards ISOS-L2 (light plus temperature) and ISOS-LC (light cycling).

In-situ measurement of liquid composition by digital in-line holography

This postdoctoral position is part of the ANR ATICS project (Advanced Tri-dimensional Imaging of Complex Particulate Systems), which aims to develop a set of advanced tools and methods for modeling and reconstructing holograms to enhance the practical capabilities of three-dimensional imaging through digital inline holography. This is a collaborative research project lasting four years, involving four university laboratories, the CNRS, grandes écoles, and the CEA. Within this framework, the objective of the postdoctoral work is to provide physical knowledge and data to other team members and to demonstrate the contributions of the theoretical and numerical developments made in ATICS in two research areas in which the partners are regularly involved: multiphase flows and recycling processes. To achieve this, new experimental devices for measuring the composition of liquids will be developed, leveraging the potential of inline digital holography at various scales, from microfluidics to the study of sprays in acoustic levitation. The work will be conducted in close collaboration with the teams at the IUSTI laboratory of Aix-Marseille University.

Thermochemical and thermodynamic study of chloride molten salts

In today’s climate emergency, access to clean and cheap energy is more important than ever. Several ways have been envisaged for several years now, but a number of technological issues still need to be overcome before they can be put into practice, as they represent breakthroughts. Whether for energy storage than for fourth generation nuclear reactors, molten salt environment used as coolant and/or as fuel is highly corrosive requiring a complexe choice of structural materials.
The aim of this subject proposed in the Corrosion and Materials Behavior Section is to study in depth the chemical properties of different chloride molten salts : the basic ternary salt (NaCl-MgCl2-CeCl3) but also the corrosion/fission/activation products that can be produced (MxCly with M=Cr, Fe, Te, Nd, Ni, Mo,…). The activity coefficients and solubility limits of these metallic elements will be determined using various techniques such as electrochemistry and Knudsen cell mass spectrometry. If required, this study can be completed by the phase transition temperature and heat capacity measurements using differential scanning calorimetry.

Signal processing of ultra-fast gamma-ray detectors using Machine Learning

In the frame of the ANR project AAIMME dedicated to the Positron-Emission Tomography (PET), we propose a 24-month post-doctoral position that will focus on the development of signal processing methods for the detector ClearMind, designed at the CEA-IRFU. The detector is specifically developed to provide a precise interaction time in the sensitive volume. It consists of a scintillator PbWO4 detector, coupling with a Micro Channel Plate PhotoMultiplier Tube, whose signals are digitized using fast acquisition modules SAMPIC. The main advantage is to exploit both fast Tcherenkov and scintillation photons to reconstruct as accurately as possible the interactions inside the Crystal.
The analysis of the detector signal represents a major challenge: they are complex and intricated, thus, it necessitates a dedicated processing step.
The objective of this post-doc is to develop these trustworthy Machine Learning algorithms to reconstruct the properties of the gamma-ray interaction in the detector, with the highest achievable accuracy, using the detector signals.

Development of innovative electrolytes for high power Na-ion batteries

The Postdoctoral position will be part of the PEPR Battery Hipohybat project. This project aims to develop high-power Na-ion batteries in close collaboration with academic partners such as Collège de France and IS2M. The Na+ ion conductivity in the bulk of the electrolyte, as well as at the electrode-electrolyte interface (EEI), are the two major criteria that need to be optimized in electrolytes to enable the development of fast-charging Na-ion cells.

The first strategy to increase bulk conductivity will be to use less viscous co-solvents, such as ethers or nitriles. However, these solvents exhibit poor electrochemical stability. Therefore, as a first step, the impact of adding such co-solvents to the state-of-the-art Na-ion electrolyte in various proportions will be studied to (i) determine their electrochemical stability windows and (ii) analyze their solvation/desolvation behavior, which is critical for their power rate capabilities. The fluorinated counterparts of the most promising co-solvents will also be investigated to improve oxidative stability and enable the formation of a stable solid electrolyte interphase at the negative electrode.

The second approach will focus on identifying additives that lead to ‘non-resistive’ interphases. Both commercial and in-house synthesized additives will be explored for this purpose. By tuning the three electrolyte components together, new formulations will be developed to achieve a better compromise between fast Na?-ion kinetics and stable cycling performance of Na-ion cells.

Top