Preparation and optimization of HiPIMS PVD coatings for corrosion protection of nickel alloys in molten chloride environments
The aim of this post-doctoral project is to demonstrate the effectiveness and performance of various materials - metals, oxides and ceramics - that can be used as coatings on nickel alloys intended for the construction of a molten-salt reactor. Coatings deposited by HiPIMS PVD will be subjected to microscopic and structural characterization to optimize deposition parameters. Corrosion experiments in a molten-salt environment will then be used to verify the performance of these coatings, and to identify degradation mechanisms to remedy them. The most promising compositions can be optimized by the addition of minor elements, a development involving multi-target PVD devices.
In situ analysis of dislocations with Molecular Dynamics
Thanks to new supercomputer architectures, classical molecular dynamics (MD) simulations will soon reach the scale of a trillion atoms. These unprecedentedly large simulation systems will thus be capable of representing metal plasticity at the micron scale. Such simulations generate an enormous amount of data, and the challenge now lies in processing them to extract statistically relevant features for the mesoscale plasticity models (continuous-scale models).
The evolution of a material is complex as it depends on extended crystal defect lines (dislocations), whose dynamics are governed by numerous mechanisms. To feed higher-scale models, the key quantities to extract are the velocities and lengths of dislocations, as well as their evolution over time. These data can be extracted using specific post-processing techniques based on local environment characterization ('distortion score' [Goryaeva_2020], 'local deformation' [Lafourcade_2018], ‘DXA’ [Stukowski_2012]). However, these methods remain computationally expensive and do not allow for in situ processing.
We have recently developed a robust method for real-time identification of crystalline structures [Lafourcade_2023], which will soon be extended to dislocation classification. The objective of this postdoctoral project is to develop a complete analysis pipeline leading to the in situ identification of dislocations in atomic-scale simulations and their extraction in a nodal representation.
Distributed fiber optic sensor for hydrogen leak detection
Hydrogen technologies are among the most promising low-carbon energies, and it fits perfectly the context of ecological transition. Carbon-free hydrogen represents a greener and more sustainable alternative to the batteries currently used for energy storage. There is a huge interest in optimizing the procedure for hydrogen production, use, and storage. This subject represents a particular interest for the CEA, EDF, and ORANO through several projects such as PEPR-H2 and udd@Orano. However, only a few works are carried out within the safety improvement framework of this energy production, transport, and use structures of this energy. Hydrogen leaks can represent a very high risk of a serious accident. In this project, we bring together several CEA departments expertise to develop a new hydrogen leak detection technology that can meet these major challenges. The combination of a simple chemical reaction (exothermic reaction) with distributed fiber optic sensors allows the creation of a new generation of hybrid sensors. These sensors use a reagent that heats up in the presence of hydrogen, leading to a temperature rise, which can be detected easily using an optical fiber distributed sensor. This measurement is characterized by high precision (can measure temperature variations of about 0.5 °C) with spatial resolutions that can reach the millimeter. These sensors will allow the monitoring of production lines, transport circuits, storage containers, etc., and provide real-time information on any containment system failure. Which will allow the localization of leaks with greater precision than the existing sensors. The low energy input (a few mW) and the absence of electronics reduce the risk of sparking, which makes the sensor functional and safe, even in the presence of high concentrations of hydrogen.
Adapting the Delayed Hydride Cracking (DHC) experience to irradiated materials
The objective of this study is to nuclearize the Delayed Hydride Cracking (DHC) experiment developed as part of Pierrick FRANCOIS PhD research (2020-2023). This experiment enables the reproduction of the DHC phenomenon in Zircaloy cladding under laboratory conditions to determine the material's fracture toughness in case of DHC: KI_DHC.
The term "nuclearize" refers to the adaptation of the experiment to test irradiated materials within dedicated shielded enclosures (called hot cells), where materials are handled using remote manipulators. The experimental protocols described in Pierrick FRANCOIS' thesis must therefore be modified, and ideally simplified, to allow for their implementation in hot cells. This will require close collaboration with the personnel responsible for the tests and the use of numerical simulation tools developed during the same PhD research.
The development of this hot cell procedure will be used by the postdoctoral researcher to assess the risk of HC during dry storage of spent fuel assemblies by quantifying the fracture toughness of irradiated claddings.
Optimizing phytotechnologies for the remediation of contaminated nuclear sites
CEA is recruiting a postdoctoral researcher for a research project aimed at optimizing phytotechnologies for the remediation of contaminated nuclear sites. This research is part of the risk management and remediation of contaminated soils, in particular those resulting from the decommissioning of nuclear facilities. The aim of the project is to develop an advanced mechanistic model of soil-plant transfers, in order to gain a better understanding of contaminant mobility in lightly contaminated soils, and to optimize the use of suitable plants to stabilize these contaminants.
Modeling the corrosion behavior of stainless steels in a nitric acid media with temperature
Controlling the aging of equipment materials (mainly stainless steel) of the spent nuclear fuel reprocessing plant is the subject of constant attention. This control requires a better understanding of the corrosion phenomena of steels by nitric acid (oxidizing agent used during the recycling stages), and ultimately through their modeling.
The materials of interest are Cr-Ni austenitic stainless steels, with very low carbon content. A recent study on Si-rich stainless steel, which was developed with the aim of improving the corrosion resistance of these steels with respect to highly oxidizing environments [1 , 2 ]; showed that the corrosion of this steel was thermally activated between 40 °C and 142 °C with different behavior below and above the boiling temperature (107 °C) of the solution [3]. Indeed, between 40°C and 107°C, the activation energy is 77 kJ/mol and above boiling point, it is much lower and is worth 20 kJ/mol. This difference may be due to a lower energy barrier or a different kinetically limited step.
The challenge of this post-doctoral subject is to have a predictive corrosion model depending on the temperature (below and beyond boiling). With this objective, it will be important to analyze and identify the species involved in the corrosion process (liquid and gas phase) as a function of temperature but also to characterize the boiling regimes. This model will be able to explain the difference in activation energies of this Si-rich steel below and above the boiling temperature of a concentrated nitric acid solution but will also make it possible to optimize the processes of the factory where temperature and/or heat transfer play an important role.
Design and accelerated testing of corrosion FOSs for reinforced concrete structures
Corrosion of steel reinforcement is the main pathology threatening the durability of civil engineering structures. Today, structures are mainly monitored by means of periodic visual inspections or even auscultation (corrosion potentials, ultrasonic measurements, core sampling, etc…), which are not very satisfactory. There is therefore a need for instrumentation capable of detecting the initiation and location of corrosion of reinforcement in concrete and ensuring long-term monitoring (several decades or more). In the context of Civil Engineering (CE) structures, Optical Frequency-Domain Reflectometry (OFDR) appears to be a suitable metrological solution because of its centimetre resolution and measurement range (70 metres in the standard version, i.e. several thousand measurement points along an optical fibre).
Content of work: The aim will be to adapt the design of this fibre optic sensor (FOS) to increase its durability and then to verify its applicability in the laboratory. Initially, the person recruited on a fixed-term research contract will be asked to work on the durability of the connexion between the optical fibre and the armature. Two different methods are envisaged: plasma torch spraying of ceramic powders and sol-gel. Both of these processes prevent the galvanic coupling because they involve insulating materials (ceramics) and are already deployed in industry in various civil and military fields. Secondly, test specimens equipped with the FOS will be tested in the laboratory according to classic civil engineering situations, i.e. localised corrosion (pitting induced by exposure to chloride ions) and uniform corrosion (generalised corrosion induced by carbonation of the embedding concrete). OFDR acquisitions will be carried out periodically over time in parallel with conventional metrology (potential, etc.).
Thermodynamic study of the Nb-O-Zr system for the nuclear fuel elements recycling
The first step of nuclear material recycling consists in a section-cutting process of the fuel assemblies leading to shells.
Nuclear materials in the cut sections are dissolved in acid solutions whilst structural as well as cladding materials are rinsed and then compacted in CSD-C containers for a final storage in CIGEO.
The REGAIN project aims at studying the feasibility of an alternative solution: the objective is to investigate the possibility to optimize the nuclear and cladding materials management by reducing the radiological source term. The idea is to proceed to a sequence of decontamination steps in order to minimize the waste volume: The first step consists in removing minor actinides and fission products and the second one in the separation of zirconium from structural activation products.
In order to feed the industrial process study, a part of the REGAIN project aims at collecting raw data, which will be used by the other work packages of the project.
In this framework, CEA proposes a post-doctoral position with the purpose of developing a thermodynamic database for the Nb-O-Zr system starting from literature data as well as using experimental informations obtained within the first stages of the project. It will be also possible to include a selection of key fission products into the existing database. The candidate may also be asked to complete the existing data by an experimental campaign to obtain a complete set of data for the modelling. The scientific approach will be based on the CALPHAD method: this method allows developing a thermodynamic database by the definition of an analytical formulation of the thermodynamic potential, which will be used to calculate phase diagrams as well as thermodynamic properties of multi-components systems.
Separation microsystem coupled to mass spectrometry for on-line purification and characterisation of nuclear samples
The miniaturisation of analytical steps commonly carried out in laboratories offers many advantages and particularly in the nuclear sector, where the reduction of material consumption and waste production is of major interest. In this context, one of our laboratory’s focus area is the miniaturisation of analytical tools, particularly chromatographic separation techniques. The aim of this project is to reduce the scale of the purification steps of nuclear samples by solid phase extraction chromatography, prior to the analytical processes. Obtaining these miniaturised extraction devices is based on the in situ synthesis and anchoring of monoliths, in the channels of cyclic olefin copolymer (COC) microsystems. Since this material is chemically inert, COC functionalisation strategies are currently under development to covalently graft reactive sites on its surface, before locally anchoring actinide-specific monoliths in the micro-channels. The aim is to design and fabricate chromatographic extraction microsystems in COC, and to implement them for chemical purification and mass spectrometry measurements, both off-line and on-line.
Development of a simulation tool for the pitting process of a stainless steel used for the storage of nuclear waste
Structural nuclear waste is compacted in patties, stacked in a stainless steel container. In these compacting boxes are placed various metal-type materials with the addition of organic matter, including chlorinated waste. By radiolytic degradation, these can lead to the formation of hydrogen chloride HCl. During the storage phase, relative humidity may be present within the container, which, added to the HCl, may lead to a phenomenon of condensation, resulting, on the surface of the materials, of acid and concentrated into chloride ions condensates. In contact with this acid and chloride electrolyte, a pitting phenomenon is likely to begin on the surface of a stainless steel. This is a local phenomenon that can lead to the piercing of the material in extreme cases. The initiation of this phenomenon depends on several factors: the morphology of the electrolyte, its composition and its evolution over time.
If nowadays this phenomenon is well known, modeling it remains a major challenge because it is a coupled multi-physics and multi-parameter problem. Many questions remain open, particularly at the level of the physical and chemical laws to be used or how to represent the corrosion process?
The objective of the post-doctorate is to develop a tool under COMSOL capable of simulating the initiation and the evolution over time of a pit on the surface of a stainless steel. The approach will be based on a mechanistic modeling of the processes (material transport process and all the chemical and electrochemical reactions).
The post-doctorate will take place in several actions:
1- make a state of the art of the bibliography in order to understand the pitting phenomenon and to identify the laws necessary for modeling.
2-simulate the spread of the pit in a chloride environment in order to establish a propagation criterion.
3-the pitting initiation will be implemented in order to obtain a complete tool capable of simulating the pitting process