MULTI-CRITERIA ANALYZES OF HYDROGEN PRODUCTION TECHNOLOGIES BY ELECTROLYSIS

LITEN, strongly involved in electrolysis technologies, wishes to compare via a multi-criteria analysis all electrolysis technologies currently available commercially (AEL, PEMEL), in the pre-industrialization phase (SOEL), or in R&D (AEMEL and PCCEL).
Our previous studies were based on specific use cases (fixed hypotheses on the size of the factory, the source of electricity, the technology, etc.).
The objective of this new work is to be able to position the different electrolysis technologies according to parameters which will be defined at the start of the project, these parameters being of a contextual type (e.g. number of operating hours, expected flexibility), technical ( ex yield, lifespan) or technical-economic (ex CAPEX OPEX) and environmental (ex GHG impacts, materials). The aim here will be to develop an original methodology which makes it possible to define the areas of relevance of each of the electrolysis technologies according to these parameters, depending for example on the cost of the hydrogen produced and its environmental impact

Simulation of thermal transport at sub-Kelvin

Thermal management in quantum computers is an urgent and crucial task. As the number of qubits rapidly scales, more electric circuits are placed close to qubits to operate them. Joule-heating of these circuits could significantly warm the qubit device, degrading its fidelity. With intensive activity in quantum computing at Grenoble, we (CEA-LETI, Grenoble, France) are looking for an enthusiastic post-doc researcher to study thermal transport at cryogenic temperature (sub-Kelvin).
The post-doc will apply the finite-element non-equilibrium Green’s function [1], developed in the group of Natalio Mingo at CEA-Grenoble, to simulate phonon transport in various designed structures. The simulation result promotes comparison with on-going experiments and constructive discussions in order to optimize the thermal management.

[1] C. A. Polanco, A. van Roekeghem, B. Brisuda, L. Saminadayar, O. Bourgeois, and N. Mingo, Science Advances 9, 7439 (2023).

Public and private contrats for ACSL

Frama-C is a collaborative platform for the analysis of C programs. It provides a specification language named ACSL, which is based on the notion of contracts. These contracts, provided though code annotations, enable specification of the expected behavior of the different functions of a program. It is then possible to check that the program conforms to the user-provided specification thanks to the different analyzers provided by Frama-C.
An important limitation about the contracts in the current version of ACSL with respect to the C programming language is that they do not allow specifying different contracts (internal/private, external/private) for a module when this module does not export all details of the implementation to the external modules. For this, differentiating public contract and private contract is necessary, but also how to link them together so that the global consistency of specification and analysis is assured.

Development of a new reversible machine for heat-electricity conversion by upgrading low-value energy

The International Energy Agency's Net Zero Emission (NZE) strategy targets an increasing share of heat produced from electricity (i.e. by direct heating or via heat pump systems) , which must be around 15 to 40% by 2030 and around 65% in 2050 to meet industrial heat demands at low (< 150°C) and medium temperatures (150°C-400°C). Therefore, the development and massive deployment of efficient heat pump systems are already encouraged to achieve the energy transition of industries towards decarbonization of their heat supply, in particular below 150°C for applications in industries such as as chemicals, paper and agri-food. However, the expected massive electrification of different sectors of activity around 2035 (and in the decades to come) could lead, according to certain authors, to a crisis in electricity supply, particularly to meet the strong energy demand of giga-factories dedicated to the energy transition for local production of batteries and photovoltaic panels.
For these reasons, the HERCULE project aims to develop an innovative thermodynamic cycle capable of responding to the following challenges:
• Societal issues: recovery of waste heat for carbon-free production of electricity or industrial heat according to needs and economic criteria;
• Environmental issues: regulations on greenhouse gases;
• Scientific challenges: flexible conversion systems with reversible operation, compact & efficient machines.

Development of optoelectronic systems for quantum sensor technologies

The main mission of CEA LETI's Autonomy and Sensor Integration Laboratory (LAIC) is to develop sensor systems, and in particular quantum sensors for high-precision magnetic field measurement applications. The team's activities are at the interface of hardware (electronics, optronics, semiconductors), software (artificial intelligence, signal processing) and systems (electronic architecture, mechatronics, multiphysics modeling). The Swarm project (https://swarm.cnes.fr/en/), which put our quantum sensors for measuring the Earth's magnetic field into orbit in 2013, is one of our track records, and a new program with similar objectives gets underway this year.

Quantum technologies are strategic for the development of sensors with unrivalled performances, as we have demonstrated in magnetometry. Our challenge today is to adapt these developments and this know-how to new physics.
To support our developments in quantum sensors, we are looking for an opto-electronics post-doc researcher to design new quantum sensors and develop the associated optical benches. This post-doc position will have a significant experimental component.

Your main mission will be to participate to the development of these new sensors and their associated characterization benches, interfacing with CEA experts in the field.
More specifically, your mission will revolve around the following actions:
• Design and assembly of quantum sensors (optical fibers, RF sources, photodetectors)
• Participation in modeling the physical phenomena involved
• Design and build the optical characterization benches
• Development of the control electronics
• Publication of results in scientific journals
• Presentation of work in international conferences
• Patents proposal

Exploring microfluidic solutions for manufacturing targets for fusion power generation

As part of a call for projects on "innovative nuclear reactors", the TARANIS project involves studying the possibility of energy production by a power laser-initiated inertial confinement fusion power plant. The current context, which encourages the development of low-carbon energies, and the fusion experiments carried out by the NIF's American teams, make it very attractive to conduct high-level research aimed at eventually producing an economically attractive energy source based on inertial fusion.
Among the many technical hurdles to be overcome, the production of fusion targets with a suitable reaction scheme compatible with energy production is a major challenge. The CEA has the know-how to produce batches of capsules containing the fusible elements of the reaction. However, the current process is not suitable for mass production of hundreds of thousands of capsules per day at an acceptable cost.
One high-potential avenue lies in the use of microfluidic devices, for which the Microfluidic Systems and Bioengineering Laboratory (LSMB) of the Health Technologies and Innovation Department (DTIS) of CEA's DRT has recognized expertise.

Causal learning

As part of a project that concerns the creation of innovative materials, we wish to strengthen our platform in its ability to learn from little experimental data.

In particular, we wish to work firstly on the extraction of causal links between manufacturing parameters and properties. Causality extraction is a subject of great importance in AI today and we wish to adapt existing approaches to experimental data and their particularities in order to select the variables of interest. Secondly, we will focus on these causal links and their characterization (causal inference) using an approach based on fuzzy rules, that is to say we will create fuzzy rules adapted to their representation.

Development of noise-based artifical intellgence approaches

Current approaches to AI are largely based on extensive vector-matrix multiplication. In this postdoctoral project we would like to pose the question, what comes next? Specifically we would like to study whether (stochastic) noise could be the computational primitive that the a new generation of AI is built upon. This question will be answered in two steps. First, we will explore theories regarding the computational role of microscopic and system-level noise in neuroscience as well as how noise is increasingly leveraged in machine leaning and artificial intelligence. We aim to establish concrete links between these two fields and, in particular, we will explore the relationship between noise and uncertainty quantification.
Building on this, the postdoctoral researcher will then develop new models that leverage noise to carry out cognitive tasks, of which uncertainty is an intrinsic component. This will not only serve as an AI approach, but should also serve as a computational tool to study cognition in humans and also as a model for specific brain areas known to participate in different aspects of cognition, from perception to learning to decision making and uncertainty quantification.
Perspectives of the postdoctoral project should inform how future fMRI imaging and invasive and non-invasive electrophysiological recordings may be used to test theories of this model. Additionally, the candidate will be expected to interact with other activates in the CEA related to the development of noise-based analogue AI accelerators.

LLMs hybridation for requirements engineering

Developing physical or digital systems is a complex process involving both technical and human challenges. The first step is to give shape to ideas by drafting specifications for the system to be. Usually written in natural language by business analysts, these documents are the cornerstones that bind all stakeholders together for the duration of the project, making it easier to share and understand what needs to be done. Requirements engineering proposes various techniques (reviews, modeling, formalization, etc.) to regulate this process and improve the quality (consistency, completeness, etc.) of the produced requirements, with the aim of detecting and correcting defects even before the system is implemented.
In the field of requirements engineering, the recent arrival of very large model neural networks (LLMs) has the potential to be a "game changer" [4]. We propose to support the work of the functional analyst with a tool that facilitates and makes reliable the writing of the requirements corpus. The tool will make use of a conversational agent of the transformer/LLM type (such as ChatGPT or Lama) combined with rigorous analysis and assistance methods. It will propose options for rewriting requirements in a format compatible with INCOSE or EARS standards, analyze the results produced by the LLM, and provide a requirements quality audit.

Development of piezoelectric resonators for power conversion

CEA-Leti has been working to improve energy conversion technologies for over 10 years. Our research focuses on designing more efficient and compact converters by leveraging GaN-based transistors, thereby setting new standards in terms of ultra-fast switching and energy loss reduction.
In the pursuit of continuous innovation, we are exploring innovative paths, including the integration of piezoelectric mechanical resonators. These emerging devices, capable of storing energy in the form of mechanical deformations, offer a promising perspective for increased energy density, particularly at high frequencies (>1 MHz). However, the presence of parasitic resonance modes impacts the overall efficiency of the system. Therefore, we are in need of an individual with skills in mechanics, especially in vibrational mechanics, to enhance these cleanroom-manufactured micromechanical resonators.
You will be welcomed in Grenoble within a team of engineers, researchers and doctoral students, dedicated to innovation for energy, which combines the skills of microelectronics and power systems from two CEA institutes, LETI and LITEN, close to the needs of the industry (http://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/plateformes/electronique-puissance.aspx).
If you are a scientifically inclined mind, eager to tackle complex challenges, passionate about seeking innovative solutions, and ready to contribute at the forefront of technology, this position/project represents a unique opportunity. Join our team to help us push the boundaries of energy conversion.

References : http://scholar.google.fr/citations?hl=fr&user=s3xrrcgAAAAJ&view_op=list_works&sortby=pubdate

Top