Kinetic study of biocide effect in nanocellulose_based food film

This project will study the kinetic of biocide effect of a nanocellulose-based film food. The main aim is to graft Ag and/or ZnO NPs on and inside halloysite particles that have a characteristic shape of twisted sheets and therefore could acting as NPs tanks. The localization of NPs outside halloysite could induce a fast biocide effect with limited duration whereas the internal grafting could produce longer biocide effect. This project gathers all steps from the film food synthesis, its nanocharacterization to the evaluation of its toxicological effect on bacteria. The final goal is to find one or many halloysite functionalizations allowing to extend the biocide effect in film food and to transpose it to other types of materials.

Silicon nanowire elaboration for microelectronic applications

In order to realize high capacity integrated capacitor, one approach consists in developing electrode with high specific surface. In this work, we propose to perform capacitor integrating silicon nanowires. The first part of this study will be devoted to the understanding and to the optimization of Si nanowires CVD growth process. In parallel, properties of nanowires obtained by electrochemical silicon etching will be assessed and will be compared to CVD nanowires characteristics. According to the electrical performances, different strategies (metallization Silicuration…) will be envisaged in order to enhance their electrical conductivity.

New Sustainable Carbon Catalysts for PEMFC

The aim of the project is to develop and test for ORR, a mesoporous and graphitised graphene aerogel based material, presenting a hierarchical structuring allowing a better material transfer and graphitic domains increasing the durability and conductivity of the final material, and functionalised by Pt-NPs.
These graphene-based structures developed at IRIG/SyMMES possess surface chemistries and micro/meso/macro porosities that depend on the synthesis, functionalisation and drying methods used. The aim will be to increase their degree of graphitisation, and then to deposit Pt-NPs by chemical means. The electrocatalytic properties of these materials will then be tested.
Advanced meso-structural characterisation of these materials by scattering (X-ray or neutrons) methods will enable to investigate the structural properties of these new electro-catalysts. These properties will thenbe correlated to their electrocatalytic properties, and performances in fuel cell systems. This knowledge will be gained through ex-situ and operando analyses.

Low temperature process modules for 3d coolcube integration : through the end of roadmap

3D sequential integration is envisaged as a possible solution until the end of CMOS roadmap. Different process modules have been developped @ 500°C for planar FDSOI technology in a gate first process. However, regarding bottom transistor level stability in CoolcubeTM integration, and yield consideration, the need to reduce further the top transistor temperature down to 450°C should be explored.
The post-doc will have in charge the development of specific technological modules at low temperature both 500°C and 450°C for FDSOI planar devices to acquire a solid knowledge in low temperature CMOS process integration. The specific low temperature gate module will be addressed on planar devices. The threshold voltage modulation will also be studied.
The work will be performed in collaboration with the technological platform process of LETI for the low temperature modules development. The electrical characterization in collaboration with the characterization laboratory and the TCAD simulations team of LETI.

CIGS solar cells optimized for energy harvesting applications in indoor environments

The goal of this post-doctoral fellowship is to develop solar cells based on CIGS thin films, for energy harvesting applications (powering of small electronic autonomous devices). This research project will aim at optimizing the solar cell performances in indoor environments, i.e., under low light intensity. The post-doctoral fellow will be involved in CIGS thin film elaboration by physical vapour deposition, film characterization, solar cell realization and test.

Electrical Characterization of resistive memory devices

The activity of the postdoc will be focused on electrical characterization and physical modeling of devices with integrated bistable oxides (ie NiO, HfO2): mainly he will address both the hardware & methodology to address the non-volatile memory performances (ie write/erase, data retention and endurance), and he will perform measurements on several devices featuring different bistable oxides (ie NiO, HfO2…). Note that particular attention will be devoted to pulsed measurements tailored for “non-polar” or “bipolar” devices. After having collected sufficient ensemble of data on memory performance, he will try to interpret them in the simplest form with possibly semi-analitycal models in order to catch the basics of physics relying behind the electrical data.

Top