Next generation PV module packaging design and mechanical testing

Photovoltaic modules are required to last 25- 30 years in harsh outdoor environment. The packaging of PV modules plays an essential role in reaching this target. PV cells are protected by a glass frontsheet, and highly engineered polymeric encapsulants and backsheets. Encapsulants provide moisture, oxygen &UV barrier, electrical isolation and mechanical protection of highly fragile cells while they must ensure optical coupling between the various layers. Current industrial process technology for module manufacturing is lamination that adds additional constraints to the formulation of encapsulants. These numerous requirements lead to ever-involving complex encapsulant composition and behavior.
The aim of this post-doc is to establish the correlation between the material properties of engineered plastics– their processing conditions and thermo-mechanical behavior in high performance PV modules with heterojunction, back-contact or Si/Perovksite tandem cells. Material selection and lamination process development will be guided by detailed material characterization (DSC, DMA, Peel strength, TGA, WVTR, Soxhlet extraction etc.). Moreover, we aim to establish insights in the encapsulant processing conditions and its impact on mechanical stability of PV modules. The selection of the encapsulants to investigate will be strongly guided by eco-design to lower the environmental impact and to increase the recyclability of modules. This postdoc is conducted in the frame of an EU collaboration.

Study and modeling of fiber Bragg grating acoustic receivers

CEA List has been working for several years on the development of advanced monitoring solutions using fibre optic acoustic receivers called Fiber Bragg Gratings. These optical sensors have a great potential for structural health monitoring, both because of their ability to be integrated into materials (concrete, organic composites, metal) and because of their ability to be deployed in severe environments (embedded, radiative, high temperature).
A post-doctoral work is proposed to carry out modelling of these Fiber Bragg Grating transducers in order to refine the understanding of their sensitivity to ultrasonic guided elastic waves and to help in the design of an associated control system thanks to an intelligent placement of the sensors. Ultimately, the aim is to be able to simulate their response within the Civa non-destructive testing software developed by CEA List, and more particularly via its module dedicated to Structural Health Monitoring (SHM). Such work would strongly contribute to the adoption and exploitation of this technology for Structural Health Monitoring applications.

Microfluidic biocatalysis

The overall objective of the project is to propose a new mode of biocatalytic production based on continuous flow and combining macro and micro-fluidics. The aim is to develop a biocatalysis process involving fluidic bioreactors capable of ensuring continuous biotransformation, thanks to immobilized enzymes or whole cell catalysts. This process will be optimized to improve the efficiency of enzymatic reactions on the one hand and to obtain important production capacities on the other hand. Two types of enzymes will be studied, nitrilases and ketoreductases.
First, the candidate will be responsible for the search for robust enzymes for the target reactions and screening on the defined substrates. He or she will be responsible for the development of reaction conditions in isolated enzymes and whole cells and the determination of apparent kinetics. Then, he/she will be in charge of setting up the biocatalysis operating conditions and the immobilization of the biocatalyst in versatile continuous reactors.
This subject is carried out between two departments of the CEA (Direction of Fundamental Research/IBFJ/Genoscope in Evry and Direction of Technological Research/Leti in Grenoble).
The candidate will work in pair with a PhD student on the design of the biocatalytic reactor and the scaling up of the biocatalytic process.

Development of irradiation resistant silicon materials and integration in photovoltaïcs cells for space applications

Historically, photovoltaic (PV) energy was developed together with the rise of space exploration. In the 90’s, multijunction solar cells based on III-V materials progressively replaced silicon (Si) cells, taking advantage of higher efficiency levels and electrons/protons irradiation resistance. Nowadays, the space environment is again looking at Si based PV applications: request of higher PV power, moderated space mission lengths, cost reduction issues (€/W Si ~ III-V/500), higher efficiencies p-type Si PV cells… Solar cells are exposed to cosmic irradiation in space, especially to electrons and protons fluxes. The latter’s affect the cells performances, essentially because of bulk defect formations and charge carrier recombination. In order to use Si based solar cells in space, we need to increase their irradiation resistance, which is the main goal of this post-doc position. To do so, the work will first consist in elaborating new Si materials, with increased irradiation resistance. Compositional aspects of the Si will be modified, particularly by introducing elements limiting the formation of bulk defects under irradiations, developing electrical passivation properties. The electronic properties of the materials will be deeply characterized before and after controlled irradiation. Then, this Si material will be used to fabricate heterojunction solar cells. Their performances will be evaluated again before and after irradiation. Such experimental work could be supported by numerical simulation at the device scale.

Modeling of faults on low voltage DC networks in buildings, towards fault detection algorithms

The development of the use of renewable energies and energy storage as well as the progress made by power electronic components are gradually leading to a rethinking of the architectures of low voltage electrical distribution networks in buildings. These developments will allow the development of direct current or mixed alternating-direct current networks supplied by static converters. On this type of network, faults become more difficult to manage due to the power sources used. Indeed, the usual signatures of the short-circuit or the overload are no longer the same and will vary according to the converters used and the architecture of the network. For this, it is necessary to identify, by simulation, the most suitable protection topologies (by neutral systems for example) and to identify the typical fault signatures. Ultimately, these signatures will provide optimum detection devices.

HPC simulations for PEM fuel cells

The goal is to improve TRUST-FC software -a joint development between LITEN and DES institutes at CEA- for detailed full 3D simulation of hydrogene PEM fuel cells and to run simulations on whole real bipolar plate geometries. Funded by AIDAS virtual lab (CEA/Forshungs Zentrum Juelich), a fully coupled electro-chemical, fluidic and thermal model has been built, based on CEA software TRUST. The model has been benchmarked against its FZJ counterpart (Open fuelcell, based on OpenFoam). The candidate will adapt the software and toolchain to larger and larger meshes up to billion cells meshes required to model a full bipolar plate. Besides, he will introduce two phase flow models in order to address the current technological challenges (local flooding or dryout). This ambitious project is actively supported by close collaboration with CEA/DES and FZJ.

Lean-Rare Earth Magnetic materials

The energy transition will lead to a very strong growth in the demand for rare earths (RE) over the next decade, especially for the elements (Nd, Pr) and (Dy, Tb). These RE, classified as critical materials, are used almost exclusively to produce NdFeB permanent magnets, and constitute 30% of their mass.
Several recent international studies, aiming to identify new alloys with low RE content and comparable performances to the dense magnetic phase Nd2Fe14B, put hard magnetic compounds of RE-Fe12 type as advantageous substitution solutions, allowing to reduce more that 35% of the amount of RE, while keeping the intrinsic magnetic properties close to those of the Nd2Fe14B composition.
The industrial developments of the RE-Fe12 alloys cannot yet be considered due to the important technological and scientific challenge that remain to be lifted in order to be able to produce dense magnets with resistance to demagnetization sufficient for current applications (coercivity Hc > 800 kA/m).
The aim of the post-doctoral work is to develop Nd-Fe12 based alloys with optimized intrinsic magnetic properties and to master the sintering of the powders in order to obtain dense magnets with coercivity beyond 800 kA/m, to fulfil the requirements of the applications in electric mobility. Two technological and scientific challenges are identified:
- understanding of the role of secondary phases on the coercivity. This will open the way to the implementation of techniques called "grain boundary engineering", well known for the NdFeB magnets to have remarkably improved the resistance to demagnetization.
- mastering the sintering step of these powders at low temperature (< 600°C) in order to avoid the decomposotion of the magnetic phase by grain boundary engineering

High efficiency silicon cell irradiations for space

Historically, photovoltaics was developed in conjunction with the growth of space exploration. During the 90's, III-V multi-junction solar cells were progressively replaced silicon, for their superior performance & radiation hardness. Today, the context is favorable to a revival of space Si: increasing PV power needs, missions with moderate durations & constraints (LEO), very low cost & high performance terrestrial Si cells (p-type > 26% AM1.5g). However, for Si cells, conventional irradiation ageing methods & sequences (ECSS) are less appropriate. As the literature mainly comes from 80s - 90s, it is necessary to revisit the topic for the latest generation of passivated contacts Si cells (developed at CEA INES) and the unique double beam irradiation facilities of JANNuS platform - CEA Saclay.
This work is part of the SiNRJs project, at the interface between two CEA departments, dealing with space photovoltaics & materials irradiation. The scientific & technological approach adopted: 1. fabrication of passivated contact Si cells (HeT and/or Poly-Si) 2. Si cells optoelectronic characterizations before irradiation (IV AM1.5/AM0, EQE, etc.) 3. Cells & samples proton irradiations, in situ characterizations (Raman & El) 4. Ex situ characterizations after irradiations (IV AM1.5/AM0, EQE, etc) 5. Results analysis and synthesis. From a scientific point of view, the key issues to be addressed concern the understanding of the mechanisms/dynamics of defect creation/healing under this double electronic and ballistic excitation.

Development of artificial intelligence algorithms for narrow-band localization

Narrowband (NB) radio signals are widely used in the context of low power, wide area (LPWA) networks, which are one of the key components of the Internet-of-Things (NB-IoT). However, because of their limited bandwidth, such signals are not well suited for accurate localization, especially when used in a complex environment like high buildings areas or urban canyons, which create signals reflections and obstructions. One approach to overcome these difficulties is to use a 3D model of the city and its buildings in order to better predict the signal propagation. Because this modelling is very complex, state-of-the art localization algorithms cannot handle it efficiently and new techniques based on machine learning and artificial intelligence should be considered to solve this very hard problem. The LCOI laboratory has deployed a NB-IoT network in the city of Grenoble and is currently building a very large database to support these studies.
Based on an analysis of the existing literature and using the knowledge acquired in the LCOI laboratory, the researcher will
- Contribute and supervise the current data collection.
- Exploit existing database to perform statistical analysis and modelling of NB-IoT signal propagation in various environments.
- Develop a toolchain to simulate signal propagation using 3D topology.
- Refine existing performance bounds through a more accurate signal modelling.
- Develop and implement real-time as well as off line AI-based localization algorithms using 3D topology.
- Evaluate and compare developed algorithms with respect to SoTA algorithms.
- Contribute to collaborative or industrial projects through this research work.
- Publish research papers in high quality journals and conference proceedings.

Design and fabrication of the magnetic control of 1.000 qubits arrays

Quantum computing is nowadays a strong field of research at CEA-LETI and in numerous institutes and companies around the world. In particular, RF magnetic fields allow to control the spin of silicon qubits, and pathway for large scale control is a real technological challenge.
The bibliographic analysis and the studies already carried out will able to draw out the pros and cons of the various existing solutions. In collaboration with integration, simulation and design staff, a proof of concept will be develloped and fabricated.

Top