Lean-Rare Earth Magnetic materials

The energy transition will lead to a very strong growth in the demand for rare earths (RE) over the next decade, especially for the elements (Nd, Pr) and (Dy, Tb). These RE, classified as critical materials, are used almost exclusively to produce NdFeB permanent magnets, and constitute 30% of their mass.
Several recent international studies, aiming to identify new alloys with low RE content and comparable performances to the dense magnetic phase Nd2Fe14B, put hard magnetic compounds of RE-Fe12 type as advantageous substitution solutions, allowing to reduce more that 35% of the amount of RE, while keeping the intrinsic magnetic properties close to those of the Nd2Fe14B composition.
The industrial developments of the RE-Fe12 alloys cannot yet be considered due to the important technological and scientific challenge that remain to be lifted in order to be able to produce dense magnets with resistance to demagnetization sufficient for current applications (coercivity Hc > 800 kA/m).
The aim of the post-doctoral work is to develop Nd-Fe12 based alloys with optimized intrinsic magnetic properties and to master the sintering of the powders in order to obtain dense magnets with coercivity beyond 800 kA/m, to fulfil the requirements of the applications in electric mobility. Two technological and scientific challenges are identified:
- understanding of the role of secondary phases on the coercivity. This will open the way to the implementation of techniques called "grain boundary engineering", well known for the NdFeB magnets to have remarkably improved the resistance to demagnetization.
- mastering the sintering step of these powders at low temperature (< 600°C) in order to avoid the decomposotion of the magnetic phase by grain boundary engineering

High efficiency silicon cell irradiations for space

Historically, photovoltaics was developed in conjunction with the growth of space exploration. During the 90's, III-V multi-junction solar cells were progressively replaced silicon, for their superior performance & radiation hardness. Today, the context is favorable to a revival of space Si: increasing PV power needs, missions with moderate durations & constraints (LEO), very low cost & high performance terrestrial Si cells (p-type > 26% AM1.5g). However, for Si cells, conventional irradiation ageing methods & sequences (ECSS) are less appropriate. As the literature mainly comes from 80s - 90s, it is necessary to revisit the topic for the latest generation of passivated contacts Si cells (developed at CEA INES) and the unique double beam irradiation facilities of JANNuS platform - CEA Saclay.
This work is part of the SiNRJs project, at the interface between two CEA departments, dealing with space photovoltaics & materials irradiation. The scientific & technological approach adopted: 1. fabrication of passivated contact Si cells (HeT and/or Poly-Si) 2. Si cells optoelectronic characterizations before irradiation (IV AM1.5/AM0, EQE, etc.) 3. Cells & samples proton irradiations, in situ characterizations (Raman & El) 4. Ex situ characterizations after irradiations (IV AM1.5/AM0, EQE, etc) 5. Results analysis and synthesis. From a scientific point of view, the key issues to be addressed concern the understanding of the mechanisms/dynamics of defect creation/healing under this double electronic and ballistic excitation.

Development of artificial intelligence algorithms for narrow-band localization

Narrowband (NB) radio signals are widely used in the context of low power, wide area (LPWA) networks, which are one of the key components of the Internet-of-Things (NB-IoT). However, because of their limited bandwidth, such signals are not well suited for accurate localization, especially when used in a complex environment like high buildings areas or urban canyons, which create signals reflections and obstructions. One approach to overcome these difficulties is to use a 3D model of the city and its buildings in order to better predict the signal propagation. Because this modelling is very complex, state-of-the art localization algorithms cannot handle it efficiently and new techniques based on machine learning and artificial intelligence should be considered to solve this very hard problem. The LCOI laboratory has deployed a NB-IoT network in the city of Grenoble and is currently building a very large database to support these studies.
Based on an analysis of the existing literature and using the knowledge acquired in the LCOI laboratory, the researcher will
- Contribute and supervise the current data collection.
- Exploit existing database to perform statistical analysis and modelling of NB-IoT signal propagation in various environments.
- Develop a toolchain to simulate signal propagation using 3D topology.
- Refine existing performance bounds through a more accurate signal modelling.
- Develop and implement real-time as well as off line AI-based localization algorithms using 3D topology.
- Evaluate and compare developed algorithms with respect to SoTA algorithms.
- Contribute to collaborative or industrial projects through this research work.
- Publish research papers in high quality journals and conference proceedings.

Design and fabrication of the magnetic control of 1.000 qubits arrays

Quantum computing is nowadays a strong field of research at CEA-LETI and in numerous institutes and companies around the world. In particular, RF magnetic fields allow to control the spin of silicon qubits, and pathway for large scale control is a real technological challenge.
The bibliographic analysis and the studies already carried out will able to draw out the pros and cons of the various existing solutions. In collaboration with integration, simulation and design staff, a proof of concept will be develloped and fabricated.

Auto-adaptive neural decoder for clinical brain-spine interfacing

CEA/LETI/CLINATEC invite applications for postdoctoral position to work on the HORIZON-EIC project. The project goal is to explore novel solutions for functional rehabilitation and/or compensation for people with sever motor disabilities using auto-adaptive Brain-Machine Interface (BMI) / neuroprosthetics. Neuroprosthetics record, and decode brain neuronal signal for activating effectors (exoskeleton, implantable spinal cord stimulator etc.) directly without physiological neural control command pass way interrupted by spinal cord injury. A set of algorithms to decode neuronal activity recorded at the level of the cerebral cortex (Electrocorticogram) using chronic WIMAGINE implants were developed at CLINATEC and tested in the frame of 2 clinical research protocols in tetraplegics in Grenoble and in paraplegics in Lausanne. The postdoctoral fellow will contribute to the next highly ambitious scientific breakthroughs addressing the medical needs of patients. The crucial improvement of usability may be achieved by alleviating the need of constant BMI decoder recalibration introducing an auto-adaptive framework to train the decoder in an adaptive manner during the neuroprosthetics self-directed use. Auto-adaptive BMI (A-BMI) adds a supplementary loop evaluating from neuronal data the level of coherence between user’s intended motions and effector actions. It may provide BMI task information (labels) to the data registered during the neuroprosthetics self-directed use to be employed for BMI decoder real-time update. Innovative A-BMI neural decoder will be explored and tested offline and in real-time in ongoing clinical trials.

Decentralized Solar Charging System for Sustainable Mobility in rural Africa

A novel stand-alone solar charging station (SASCS) will be deployed of in Ethiopia. Seeing as 45% of Sub-Saharian Africa’s population lacks direct access to electricity grids and seeing as the the infrastructure necessary to reliably harness other energy sources is largely non-existent for many such populations in Ethiopia, introducing the SASCS among some of the country’s rural communities is a necessary effort. It could ostensibly invigorate communities’ agricultural sector and support those whose employment is rooted in farming. A SASCS could also serve to integrate renewable energy within the country’s existing electricity mix. CEA INES will act as a consulting Partner for the design and implementation of the solution (second life batteries, solar will be investigated). In addition, because of CEA INES’s established expertise in the installation of solar tools within various communities, the initiative will also provide know-how for the installation of the SolChargE in Ethiopia as well as cooperate on workshops for students and technicians employed by the project.

Development of large area substrates for power electronics

Improving the performance of power electronics components is a major challenge for reducing our energy consumption. Diamond appears as the ultimate candidate for power electronics. However, the small dimensions and the price of the substrates are obstacles to the use of this material. The main objective of the work is to overcome these two difficulties by slicing the samples into thin layers by SmartCut™ and by tiling these thin layers to obtain substrates compatible with microelectronics.
For this, various experiments will be carried out in a clean room. Firstly, the SmartCut™ process must be made more reliable. Characterizations such as optical microscopy, AFM, SEM, Raman, XPS, electrical, etc. will be carried out in order to better understand the mechanisms involved in this process.
The candidate might be required to work on other wide-gap materials studied in the laboratory such as GaN and SiC, which will allow him to have a broader view of substrates for power electronics.

Design of 2D Matrix For Silicum Quantum computing with Validation by Simulation

The objective is to design a 2D matrix structure for quantum computing on silicon in order to consider structures of several hundred physical Qubits.

In particular the subject will be focused on:
- The functionality of the structure (Coulomb interaction, RF and quantum)
- Manufacturing constraints (simulation and realistic process constraint)
- The variability of the components (Taking into account the variability parameter and realistic defectivity)
- The constraints induced on the algorithms (error correction code)
- Scalability of the structure to thousands of physical Qubits

The candidate will work within a project of more than fifty people with expertise covering the design, fabrication, characterization and modeling of spin qubits as well as related disciplines (cryoelectronics, quantum algorithms, quantum error correction, …)

Effect of TSV presence on BEOL reliability for 3-layer stacked CMOS image sensor (CIS)

Because conventional downsizing based on the empirical Moore's law has reached its limitations, an alternative integration technology, such as three-dimensional integration (3DI) is becoming the mainstream. The 3rd generation of CMOS image sensor (CIS) stacks up to 3 die interconnected by hybrid bonding and High Density Through Silicon Vias (HD-TSVs). Devices and circuits good functioning and integrity have to be maintained in such an integration especially in the close neighborhood of TSVs. Thermal budget, copper pumping, thin wafer warpage can lead to electrical yield and reliability concerns and must be investigated.
The work consists in evaluating the impact of TSV processing and proximity on BEOL and FEOL performance and reliability. Acquired data sets will help to define design rules and in particular a potential Keep-Out Zone (KOZ) and calibrate a finite element model (FFM).

Theoretical and experimental studies of the polarized light's propagation into OLED structure

In collaboration with chemists from CEA Saclay and the University of Rennes, Leti's LCEM laboratory is interested in new chiral molecules for OLED (Organic Light Emitting Device) sources able to emit circularly polarized light (CP). The interest of these CPOLED sources is multiple and encompasses both micro-screens and healthcare applications. While the state of the art is quite extensive on the chemical part, few studies have looked at the generation and transport of light in CPOLEDs components.Likewise, the conditions for measuring the polarity of the light emitted are not very detailed in the existing literature.
At the LCEM laboratory, where these chiral molecules are integrated into CPOLED devices, the goal is to design OLED architectures that can better preserve the polarization of light. To do this, it is essential to understand the propagation of light in OLED stacks from a theoretical and experimental point of view. This work is part of a larger collaboration set up in the ANR "i-chiralight" project.
In this context, we are proposing a study which will take place in two phases.
- Study of simple emitting materials: The materials to be studied will be thin layers deposited under vacuum using evaporation's system of thin layers available in the laboratory. The organic materials used will be supplied by our chemical partners in Saclay or Rennes. Optical characterizations such as ellipsometry,photoluminescence, etc. will be carried out in order to assess the performance of molecules in terms of emission efficiency but also in terms of the rotational power of light. For this last point, a model able to calculate all the terms of the Müller matrices is under development and the validation of this one will be a work to be carried out by the post-doctoral fellow.
- Study of complete OLED components: In the second phase of this work, we will focus on the complete OLED system by studying the propagation of optical modes in the stack of the different layers const

Top