Design for reliability for digital circuits
Flash memories are a key enabler for high-temperature applications such as data acquisition and engine control in aerospace, automotive and drilling industries. Unfortunately, the retention time of flash memories is very sensitive to high temperatures. Even at relatively moderated temperatures, flash memories may be affected by retention-related problems especially if they are set to store more than one bit per cell. This impact can be mitigated by periodically refreshing the stored data. The problem is that, in the presence of a variable operating temperature that could be due to variable environmental and workload conditions, a fixed data-refresh frequency may become disproportionately large with a subsequent impact on response time and cycling endurance.
The first objective of this project is to implement a data-refresh method based on a specially designed counter that is able to (a) track the evolution of the temperature and its impact on the data retention time of Flash memory blocks, (b) trigger warnings against potential retention time hazards and (c) provide timestamps.
The second objective is to find the distribution law that gives the evolution of the number of data retention errors in time. The goal is to implement a methodology able to infer the remaining retention time of flash memory pages based on their data retention age, i.e., the elapsed time since data was stored, and the number of retention and non-retention errors.
The publication of the scientific results in high-ranked conferences and journals is major project objective.
Simulation of semimetal nanowires
The candidate’s mission will be:
• Simulation using ab-initio tools of the structure of bismuth nanowire bands of different diameters (from 1 nm to 10 nm).
• Extraction of parameters as effective masses, density of states, band offsets for these nanowires.
• Implementation of these parameters in a NEGF simulator to simulate bismuth nanowire transistors with variable diameter.
• Ab-initio simulation of the bismuth-dielectric nanowire interface and study of various elements of chemical passivation.
• This work will be done in collaboration with LETI / DCOS / SCME / LSIM (Philippe Blaise)
• The candidate will interact with an experimental team that will produce the simulated devices and will help to supervise one or more doctoral students, in collaboration with IMEP.
• The candidate will interact with the LTM to help predict the properties of the grid bismuth-insulator interface and implement the IMEP results in the simulator.
Physisorption of chemical species on sensitive surfaces during transfer in controlled mini-environment in microelectronics industry
A characterization platform based on the connection concept between process and characterization tools through the use of a transfer box under vacuum was implemented allowing a quasi in-situ characterization of substrates (wafers) of the microelectronics. Currently, this transfer concept based simply on static vacuum inside a carrier box is satisfactory regarding the residual O or C on the surface of especially sensitive materials (Ge, Ta, Sb, Ti…) and the MOCVD layers growth on GST or III/V surfaces. Its optimization for more stringent applications (molecular bonding, epitaxy…) in terms of contamination surface prevention requires studies the understanding of the physico-chemical evolution of the surfaces.
The proposed work will be focused on physico chemical studies of the evolution and molecular contamination of surfaces during transfers and will take place in clean room. XPS, TD-GCMS and MS coupled to the carrier itself (to be implemented) will be used to address the sources (wall, seals, gaseous environment…) of the adsorbed chemical species implied and to determine the physisorption mechanisms on the substrates. The studied surfaces will be sensitive to the contaminants in such a way than the box environment impact will be extracted and studied parameters will be the nature of polymer seal used, the carrier box thermal conditioning, the vacuum level, the use of low pressure gaseous environment in the carrier (gas nature, pressure level…).
Development of a bimodal Brillouin-Raman microscope for biological tissue characterization
The Laboratory of Physics of Cytoskeleton and Morphogenesis (LPCV) at CEA Grenoble has an opening for setting up and characterizing a novel bioimaging modality combining Brillouin and Raman Spectroscopy. This is an interdisciplinary project between LPCV and the Laboratory of Imaging and Acquisition Systems (LISA) of CEA Grenoble. Brillouin microscopy allows non-invasive measurements of the visco-elastic properties of cells and tissue on the micrometer scale, while Raman microscopy gives complementary biochemical information. Such measurements have applications in the study of cytoskeleton organization, and for novel diagnostic tools based on following early mechanical and biochemical tissue alterations.
The postdoctoral scholar will be responsible for developing and coupling a Brillouin spectrometer to the Raman micro-spectrometer of LISA. This includes optical system development, instrument control and numerical data processing. He/She will characterize the instrument on model systems prepared at LPCV, and move forward to first in-cellulo experiments. The successful candidate is expected to coordinate the interaction between LPCV and LISA.
Development of femtosecond Fiber Bragg Grating acoustic receivers for the Structural Health Monitoring using passive acoustic tomography
The proposed post-doctoral fellowship is part of a transverse project initiated by the CEA and which consists in developing a prototype of a continuous monitoring system of a metallic structure (pipe for example) using fiber Bragg gratings acoustic receivers and passive imaging (or passive tomography). It aims to demonstrate the relevance of the SHM (Structural Health Monitoring) concept for nuclear facilities using optical fiber sensors operating in continuous and in extreme environment. This project is based on two recent developments: new generation of fiber Bragg gratings developed for severe environments and defect imaging algorithms based on ambient noise analysis. A demonstration of elastic wave reconstruction from passive algorithm applied to fiber Bragg gratings was carried out at the CEA in 2015, which is a world first, patented. The project aims more particularly to produce a demonstrator and to equip a pipeline on a test loop. It will provide input data relating to the ability of a moving fluid to generate elastic waves that can be analyzed in passive tomography.
Development of flexible solar panel for space application
Traditional solar panels used to power satellites can be bulky with heavy panels folded together using mechanical hinges. Smaller and lighter than traditional solar panels, flexible solar array consists of a flexible material containing photovoltaic cells to convert light into electricity. Being flexible, the solar array could roll or snap using carbon fiber composite booms to deploy solar panels without the aid of motors, making it lighter and less expensive than current solar array designs.
On the other hand, satellite trends are shifting away from one-time stints and moving towards more regular use in a constellation setting. In the last years, the desire increased to mass-produce low-weight satellites. Photovoltaic arrays companies are challenged on their capacity to face these new needs in terms of production capacity and versatility. And this is exactly where space photovoltaics can learn from terrestrial photovoltaics where this mass production and low-cost shift occurred years ago.
To tackle these new challenges, the Liten institute started to work on these topics two years ago. In the frame of this post-doc, we propose the candidate to work on the development of an innovative flexible solar panel architecture, using high throughput assembly processes. We are looking for a candidate with a strong experience in polymers and polymers processing, along with an experience in mechanics. A previous experience in photovoltaic will be greatly appreciated.
Hardening energy efficient security features for the IoT in FDSOI 28nm technology
The security of the IoT connected objects must be energy efficient. But most of the work
around hardening by design show an additional cost, a multiplying factor of 2 to 5, on the
surface, performance, power and energy, which does not meet the constraints of the IoT.
Last 5 years research efforts on hardening have been guided by reducing silicon area or
power, which do not always imply a decrease in energy, predominant criterion in autonomous
connected objects. The postdoc topic addresses the hardening and energy consumption
optimization of the implementation of security functions (attack detection sensors,
cryptographic accelerator, random number generator, etc.) in 28nm FDSOI technology.
From the selection of existing security bricks, unhardened in FPGA technology, the postdoc
will explore hardening solutions at each step of the design flow in order to propose and
to validate, into a silicon demonstrator, the most energy efficient countermeasures that
guarantee a targeted security level.
To achieve those goals, the postdoc can rely on existing methodologies of design and of
security evaluation thanks to test benches and attack tools.
Developpment of a control quality method for radiotherapy treatments based on dosimetric gels
In the field of dosimetry for radiotherapy, chemical dosimetry, and in particular gel dosimeters, are good candidates for dose distribution measurements for the quality control of treatment plans. Actually, these gels are radiosensitive and, thus, enable measurements of the dose in 3 dimensions when read by adapted imaging methods.
This post-doctoral project deals with the development of gel dosimetry methods, using two types of reading devices: Optical tomography and Magnetic Reading Imaging. For gel-MRI dosimetry, the aim will be to adapt and validate the method used at LNHB (Laboratoire National Henri Becquerel) for quality control applications for MR-guided-radiotherapy devices. For this purpose, specific phantoms will have to be designed and produced using 3D printing. The reading method will also have to be optimized and transposed on partnering hospital devices.
Concerning the gel-optical CT dosimetry method, the whole method will have to be developed. This involves an adaptation of the composition for the gel, a characterization of the reading device and a validation of the method established.
Development of lead free piezoelectric actuator
At CEA-Tech, the LETI Institute creates innovation and transfers it to industry. The micro-actuator component laboratory (LCMA) is working on the integration of piezoelectric materials into microsystems that allow electromechanical transduction. Lead zirconate titanate (PZT) is today the most powerful piezoelectric material for micro-actuator applications. However, the introduction in the near future of a new standard regarding the lead amount allowed in chips (European RoHS directive) leads us to evaluate alternative lead-free materials to PZT for piezoelectric actuator applications. The development of lead-free materials has thus become a major focus of piezoelectric research. This research led to revisit and modify some classical piezoelectric such as KNbO3 and BaTiO3. In particular, the KNaxNb1-xO3 (KNN) family has been identified as promising. The objective of the postdoc is therefore to evaluate some lead-free piezoelectric materials and to compare their properties with that of the reference material, PZT. Suitable test vehicles will be fabricated in LETI’s clean rooms for electrical and piezoelectric characterizations by mean of dedicated tools already available at lab. For this work the candidate will lean on a solid experience developed at LETI for more than 20 years on piezoelectric thin films.
Study of substrate coupling in millimeter wireless circuits
The candidate will study substrate coupling in millimeter wireless circuit. He will demonstrate the influence of silicon substrate on millimeter circuit design
The first task will consist in establishing the state of the art of substrate reduction technics on millimeter chip. The influence between building blocks at layout level will be analyzed. Parasitic noise effects, frequency and power spurious will be studied with coupling substrate tool. Specifications for layout design in order to reduce spurious will be done, especially for power, analog and digital applications. A design methodology will be proposed with this results.