Modelling/Simulation of the synthesis of anti-corrosion coatings using the MOCVD process for low-carbon energy production

The durability of materials used in many areas of energy production is limited by their degradation in the operating environment, which is often oxidising and at high temperature. This is particularly true of High Temperature Electrolysers (HTE) for the production of ‘green’ hydrogen, or the fuel cladding used in nuclear reactors to produce electricity. Anti-corrosion coatings can/should be applied to improve the lifespan of these installations, thereby conserving resources. A process for synthesising coatings using a reactive vapour route with liquid organometallic precursors (DLI - MOCVD) appears to be a very promising process.
The aim of this thesis is to model and simulate the DLI-MOCVD coating synthesis process for the two applications proposed above. Simulation results (deposition rate, deposit composition, spatial homogeneity) will be compared with experimental results from large-scale ‘pilot’ reactors at the CEA in order to optimise the model's input parameters. On the basis of this CFD simulation/experiments dialogue, the optimum conditions for deposition on a scale 1 component will be proposed. A coupling between CFD simulations and Machine Learning will be developed to accelerate the change of scale and the optimisation of scale 1 deposits.

Improving phase field damage models - Application to vitroceramic materials subjected to self-irradiation

The vitrification of nuclear waste is a solution currently adopted for the storage of nuclear waste. The vitroceramic materials considered for this application consist of a glass matrix and inclusions of crystalline phases. Rich in radioactive elements, these inclusions undergo self-irradiation resulting in their swelling, which may cause cracking of the glass matrix. It is necessary to know the maximum amount of inclusions below which the material does not crack. An experimental study on radioactive materials, produced and monitored over time, is excessively expensive and the development of a numerical approach could make it possible to better target the materials to be studied.
Following Gérald Feugueur's thesis work on the subject, which highlighted the difficulty of current models in dissociating crack initiation and propagation, the main goal is to develop and test an improved phase field model incorporating an elasticity-independent crack nucleation criterion, based on regularized models of softening plasticity. The model will be implemented using the finite element method (FEniCS code) and an alternative method using Fourier transforms (AMITEX code). Following cross-validation, the most efficient implementation will be selected for application to large-scale 3D microstructures. Close exchanges with CEA Marcoule will enable us to characterize the microstructure of the materials, and an experiment currently underway should enable us to analyze the potential cracking of these materials under self-irradiation.

Effect of water radiolysis on the hydrogen absorption flux by austenitic stainless steels in the core of a nuclear pressurized water reactor

In pressurized water nuclear reactors, the core components are exposed to both corrosion in the primary medium, pressurized water at around 150 bar and 300°C, and to neutron flux. The stainless steels in the core are damaged by a combination of neutron bombardment and corrosion. In addition, radiolysis of the water can have an impact on the mechanisms and kinetics of corrosion, the reactivity of the medium and, a priori, the mechanisms and kinetics of hydrogen absorption by these materials. This last point, which has not yet been studied, may prove problematic, as hydrogen in solid solution in steel can lead to changes in (and degradation of) the mechanical properties of the steel and induce premature cracking of the part. This highly experimental thesis will focus on the study of the impact of radiolysis phenomena on the corrosion and hydrogen uptake mechanisms of a 316L stainless steel exposed to the primary medium under irradiation. Hydrogen will be traced by deuterium, and neutron irradiation simulated by electron irradiation on particle accelerators. An existing permeation cell will be modified to allow in operando measurement by mass spectrometry of the deuterium permeation flux through a sample exposed to the simulated primary water under radiolysis conditions. The distribution of hydrogen in the material, as well as the nature of the oxide layers formed, will be analysed in detail using state-of-the-art techniques available at the CEA and in partner laboratories. The doctoral student will ultimately be required to (i) identify the mechanisms involved (corrosion and hydrogen entry), (ii) estimate their kinetics and (iii) model the evolution of hydrogen flux in the steel in connection with radiolysis activity.

Study of the influence of the microstructure of a 316L steel produced by the L-PBF process on its mechanical properties: characterization and modeling of creep and fatigue behavior

Research into additive manufacturing for the nuclear industry shows that the production of 316L austenitic steel components using laser powder bed fusion (L-PBF) presents technical challenges, including process control, material properties, qualification and prediction of mechanical behaviour under service conditions. The final properties differ from traditional processes, often exhibiting anisotropy that challenges existing design standards.
These differences are linked to the unique microstructure resulting from the L-PBF process. Controlling the manufacturing chain, from consolidation to qualification, requires an understanding of the interactions between process parameters, microstructure and mechanical properties.
The aim of this thesis is to study the relationships between the microstructure, texture and mechanical properties of 316L steel manufactured by the L-PBF process, under static or cyclic loading. This includes the influence on creep and fatigue properties, and the development of a model to predict mechanical behaviour. Using samples of 316L steel with specific microstructures consolidated by L-PBF, the proposed study aims to establish links between microstructure and mechanical properties to better predict in-service behaviour.

Polycrystalline numerical simulations of the mechanical behavior of fuel rod cladding used in pressurized water reactors

The fuel rods of pressurized water nuclear reactors are made of uranium oxide pellets stacked in zirconium alloy tubes. In reactor, these materials undergo mechanical loading that lead to their irreversible deformation. In order to guarantee the safety and increase the performance of nuclear reactors, this deformation must be modeled and predicted as precisely as possible. In order to further improve the predictivity of the models, the polycrystalline nature of these materials as well as the physical deformation mechanisms must be taken into account. This is the objective of this study, which consists of developing a physically based multi-scale numerical model of the fuel rod cladding.
The mechanical behavior of metallic materials is usually modeled by considering the material as homogeneous. In fact metallic materials are made of many crystalline grains clustered together. The behavior of the material is therefore the result of the deformation of individual grains but also their interactions between each other. In order to take into account the polycrystalline nature of the material, mean-field self-consistent polycrystalline models have been developed for many years. These models are based on the theory of homogenization of heterogeneous materials. Recently, a polycrystalline model, developed in a linear and isothermal framework, has been coupled with an axisymmetric 1D finite element calculation to simulate the in-reactor deformation of cladding tubes. A complex mechanical loading history, mimicking the stresses and strains experienced by the cladding has been simulated.
The objective of this PhD work is to extend the field of application of this model in particular by applying it to a non-linear framework in order to simulate high stress loadings, to extend it to anisothermal conditions but also to carry out 3D finite element simulations with at each element and each time step a simulation using the polycrystalline model. These theoretical and numerical developments will finally be applied to the simulation of the behavior of fuel rods in a power ramp situation thanks to its integration into a software platform used for industrial applications. This approach will allow to better assess the margins available to operate the reactor in a more flexible manner, allowing it to adapt to changes in the energy mix in complete safety.

Thermally activated glide of screw dislocations in bcc metals

Thermally activated glide of dislocation is a key point for understanding the plastic deformation of metals. The screw dislocation in bcc metals is an archetypical case for which a large quantity of experimental data has been published in the scientific literature. It is then possible to compare these data to the theoretical predictions realized from the Vineyard statistical theory [1,2]. Such a theory is an essential tool allowing to perform a scale transition from atomistic computations toward macroscopic scale at which are realized the deformation tests.
The aim of our research will be to test Vineyard theory in comparison with molecular dynamics simulations [3]. Some preliminary computations have shown a significant discrepancy that is not present when we repeat the comparison for point-like defect as vacancies or self-interstitial atoms.

[1] Vineyard G.H., J. Phys. Chem. Solids 3, 121 (1957).
[2] Proville L., Rodney D., Marinica M-C., Nature Mater. 11, 845 (2012).
[3] Proville L., Choudhury A., Nature Mater. 23, 47 (2024).

Chemo-mechanical modeling of the coupling between carbonation, rebar corrosion and cracking in cementitious materials

Rebar corrosion is one of the main causes of premature degradation of concrete infrastructures, including in the nuclear sector, where concrete is extensively used in containment structures and waste storage facilities. Carbonation, caused by the penetration of CO2 into the concrete, lowers the pH of the pore solution, promoting rebar corrosion. This corrosion leads to the formation of expansive products that can cause cracking in the material. The proposed thesis work, developed as part of a European collaborative project between CEA Saclay, École des Mines de Paris - PSL, and IRSN, aims to develop a numerical model to simulate these phenomena. The model combines a reactive transport code (Hytec) and a finite element code (Cast3M) to study the local effects of carbonation-induced corrosion on concrete cracking. This project will benefit from parallel experimental work to gather data for parameter identification and model validation. The first part of the research will focus on modeling the carbonation of cementitious materials under unsaturated conditions, while the second part will address the corrosion of rebar caused by the pH drop induced by carbonation. The model will describe the growth of corrosion products and their expansion, inducing stress within the concrete and potential microcracking.
This research project is aimed at a PhD student wishing to develop their skills in materials science, with a strong focus on multi-physical and multi-scale modeling and numerical simulations. The thesis will be carried out principally at CEA Saclay and at École des Mines de Paris – PSL (Fontainebleau).

Reactive metals corrosion in innovative binders – Experimental study and hydro-chemo-mechanical modelling

Nuclear waste management requires the packaging of several kinds of metal wastes for long-term storage. These wastes, which can be very reactive metals, are prone to corrosion and commonly immobilised into containers with hydraulic binders as embedding matrices. Innovative binders (low carbon cements, alkali activated materials) are thus developed to increase the packaging performances. The main objective of the European project STREAM (in the frame of the Eurad-2 program) is to evaluate the interactions between these metal wastes and the selected cement matrices. The PhD thesis purpose is to investigate the reactive metal corrosion in the selected binder with electrochemical techniques. A generic experimental protocol will be developed in order to determine the impact of the corrosion products growth at the metal/binder interface on the global mechanical behaviour of the binder-waste composite and possible micro-cracks occurrence. A post-mortem characterisation will be performed on the metal/binder microstructure with mechanical properties measurements of the materials at the interface, especially the corrosion products. Afterwards, these results will feed a simplified Hydro-Chemo-Mechanical (HCM) model aiming the simulation of corrosion consequences on the composite material behaviour. Subsequently, this model will be used for long-term simulation at the waste package scale.
This research project is aimed at a PhD student wishing to improve his/her skills in materials science both in the experimental field and in the modelling/simulation of coupled physicochemical phenomena.

Impact of a sodium nitrate saline plume on the radionuclide confinement properties of cementitious matrices

Using modelling to predict the migration of radioactive species through a well-known porous matrix, such as concrete, is a major challenge for society, particularly in the context of studies linked to the radioactive waste management. Demonstrating that the proposed model is robust through targeted laboratory experiments under extreme chemico-physical conditions is one of the scientific challenges proposed by the CEA as part of this PhD research project.
The young reseacher will be responsible for designing, carrying out and modelling experimental lab-tests on the retention and diffusion of radionuclides of interest in controlled cementitious conditions or under perturbation due to the nitrate plume leading to very high concentrations in the pore solution. The main expected result is to propose a predictive model coupling chemistry under extreme ionic strenght conditions and transport through complex cementitious matrices, validated by experimental data acquired on simple systems.
Surrounded by a team of experts in the field of measuring and modelling radionuclides migration in porous media, the PhD student will be able to develop or extend his/her skills in the following areas: chemistry, analytical chemistry, physico-chemistry, radiochemistry and modelling.

Development of an advanced grade of nano-reinforced austenitic steel for use under intense flux

Recent work has shown that it is possible to obtain ODS (Oxide Dispersion Strengthened) austenitic steels for use under intense flux. These new grades are beginning to be studied for nuclear applications around the world. They should have remarkable properties, particularly in terms of resistance to swelling under irradiation and creep, thanks to the addition of nano-reinforcements in exceptional density (10^23 to 10^24 m-3). These ODS steels are obtained by powder metallurgy, by co-grinding a metal powder with an oxide powder. The aim of this work is to succeed in manufacturing, using an innovative process, ODS austenitic steel cladding tubes. It will be necessary to master the recrystallization of these tubes, to propose a first critical evaluation by specifying the property/microstructure relationships and by evaluating, by irradiation with charged particles, the behavior under irradaition of this new material. The student will be trained in Scanning Electron Microscopy and the techniques that result from it (X-ray analysis, EBSD, etc.), in SAXS, in the performance and exploitation of mechanical tests. He will have to acquire good notions in Transmission Electron Microscopy and in Tomographic Atomic Probe. The understanding of the behavior under irradiation will be guided by simulations by cluster dynamics.

Top