Study and simulation of phase entrainment in mixer-settler batteries

As part of the development of new liquid-liquid extraction separation processes, experimental tests are implemented to demonstrate the recovery of valuable elements sufficiently decontaminated from impurities. These tests are commonly carried out in mixer-settler batteries. However, depending on the operating conditions, these finished products may be contaminated by impurities. This contamination results from the combination of several factors:
-Hydrodynamic: Entrainment in the solvent of non-decanted aqueous drops containing impurities
-Chemical: the impurity separation factor is low (less than 10-3)
-Process: the entrainment of drops is amplified with the increase in the rate (reduction of the residence time of the drops)
This thesis aims to increase the understanding of the different phenomena responsible for these phase entrainments in order to estimate optimal operating parameters and to guarantee a contamination of the finished products below a fixed threshold. The aim will be to develop a macroscopic model to predict the flow rate of non-decanted droplets as a function of the operating conditions in the mixer-settler batteries. It will have to be based on hydrodynamic simulations coupling the resolution of a droplet population balance to a continuous phase flow. A coupling will be carried out between this hydrodynamic model and the PAREX or PAREX+ code to size the process diagrams. The qualification of the proposed models will have to be done by comparisons with experimental measurements (based on previous or future test campaigns).

Redox behavior of technetium in the innovative PUMAS process: kinetic and speciation study

Technetium (Tc), an artificial radioactive element, makes up about 6% of the fission products in spent nuclear fuel. The PUREX process is used to separate uranium and plutonium from other fission products. However, Tc is co-extracted with these actinides, requiring an additional stripping step. In this stage, a stabilizing agent, hydrazinium nitrate (NH), is used, but due to its toxicity and CMR classification (Carcinogenic, Mutagenic, Reprotoxic), it is being replaced by less toxic alternatives such as oximes. Although promising, oximes exhibit slower stripping kinetics compared to NH. In the context of the PUMAS process, this thesis aims to understand the complex redox mechanisms of Tc and the kinetic differences between oximes and NH. The PhD student will study the reduced forms of Tc and analyze the reduction kinetics in the presence of U(IV) and anti-nitrous agents. A methodology will be developed to characterize the oxidation states of Tc, and reaction rate constants will be determined as a function of temperature and reactant concentrations.
The candidate will work closely with the supervising team to develop autonomy, adaptability, and the ability to propose innovative ideas. By the end of this journey, the candidate will have gained not only advanced technical skills but also abilities in project management, collaborative work, and scientific writing and communication. These competencies will provide strong prospects for a career in academic research or industry.

Molecular Dynamics Simulation of Plutonium(IV) in Solution

With the revival of nuclear power in France, the CEA is playing a key role in the nuclear industry of the future. In this context, engineers and researchers are mobilised to meet the growing needs of this industry. Plutonium is a key element in the nuclear fuel cycle. Acquiring molecular data is crucial to optimising and rationalising the mechanisms involved in separating this element.
Plutonium(IV) is one of the most common cationic forms in the nuclear fuel cycle. Its study by theoretical chemistry presents difficulties both in ab initio modelling (occupied f-block orbitals) and in classical atomistic simulations. In classical molecular dynamics simulation, the models necessarily require the addition of the polarisation effect, and sometimes even the addition of charge transfer, in order to reproduce the system's behaviour correctly. As a result, classical simulations containing plutonium (IV) are almost completely absent from the scientific literature. In addition, the speciation of this cation is sensitive to the acidity of the medium, which has to be taken into account in the simulations, adding a further difficulty.
The aim of this thesis is to use molecular dynamics (classical and ab initio) to simulate solutions containing plutonium, taking into account the effect of acidity. The PhD student will be faced with two main issues: the choice or development of a force field for the Pu4+ cation, and the design of a method for including acidity in the solutions. A crucial step in the process will be to compare the results with the available experimental data in order to conclude on the ability of the models to reproduce the experimental data. This thesis will be carried out in a multidisciplinary laboratory, combining experimental chemistry and theoretical modelling, while conducting both applied and fundamental research.

Radiolytic Degradation of N,N-dialkylamides: Effects on Metal Complexation

N,N-dialkylamides (or monoamides) are promising extractant molecules for the development of new processes for nuclear fuel reprocessing. In this context, these extractant molecules are exposed to radiolysis caused by ionizing radiation from radionuclides, which leads to the formation of new compounds through the breaking or modification of chemical bonds. Such changes in solution composition can alter the extractive properties, particularly in terms of efficiency and selectivity.
This thesis aims to study the impact of radiolysis on the speciation of actinide-ligand complexes in solution, in order to improve the understanding of the phenomena observed under ionizing radiation. We propose an approach combining experimental studies (chromatographic and spectroscopic techniques) with theoretical calculations (such as bond dissociation energies, identification of probable radical attack sites, stability of metal-ligand complexes, etc.) to describe the molecular speciation of species in solution. Organic compounds formed during radiation and the metallic complexes will be characterized to evaluate the modifications caused by radiation.

Study of the amorphous intermediate states during the precipitation of actinides oxalate

Growing energy needs and the climate emergency require a rapid transition to completely carbon-free energy, by mixing renewable energies and sustainable nuclear power. In this context, the precipitation of plutonium and uranium in the form of oxalate constitutes a key step in the industrial process of recycling spent fuel. A detailed understanding of the crystallization mechanisms of these oxalates thus constitutes a major challenge for better management of these operations.

However, it is now widely accepted that ions in solution assemble into crystals via a series of non-crystalline transient states, which fundamentally contradicts all classical nucleation theories used in precipitation models. In particular, we have demonstrated in recent years that rare earth oxalate crystals (Eu, Nd, Ce, Tb), some used to experimentally simulate the recycling of uranium and plutonium, form via liquid, reagent-rich nanodroplets which separate from the aqueous solvent. This behavior modifies the view hitherto retained for the precipitation of these oxalates and leads us to question the behavior of actinide oxalates.

The aim of this thesis is to confirm or refute that transient mineral droplets also form during the formation of uranium and plutonium oxalates, and to determine whether crystallization transients impact the precipitation models used to calibrate the recycling process of nuclear fuel. This study will not only impact precipitation processes used in recycling, but will also advance a fundamental question about long-debated “non-classical” crystallization.

Modeling of complexation equilibria of actinides in nitric medium. Application to the PUREX process

The PAREX+ code is a major tool in the field of separation chemistry. It allows for the modelling and simulation of separation processes base on solvent extraction. In this code, the distribution of interest species between the aqueous and organic phases is calculated at every point in the process, both in steady and transitory states. The aim of this thesis is to improve this distribution model. To achieve this, a better understanding of the phenomena involved in the organic and aqueous phases is necessary, as well as a new approach to incorporate them into the model. This thesis thus combines experimental work and modeling. The student will join a supervisory team composed of experts in separation chemistry and modeling. His work will be valued through the publication of papers and participation in international conferences. At the end of this thesis, the student will have solid knowledge in the field of solvent extraction and its modeling, which he can leverage with industry or research organizations in the nuclear field or in other areas of separation chemistry (separation of rare earths or hydrometallurgy).

SIMULATION-BASED PREDICTION OF VIBRATION IN CENTRIFUGES

Rotating machinery is a critical piece of equipment in many industrial plants, and its operation is regularly accompanied by balancing problems that result in potentially dangerous vibrations for operators and equipment. The centrifugal decanter, for example, is sometimes subject to vibrations that force the operator to slow down the production rate. The nuclear environment in which this equipment operates makes it impossible to carry out the measurements and observations required for a purely experimental study. The aim is therefore to carry out modelling with limited data in order to gain a detailed understanding of the phenomena involved. The aim of this work is to combine Euler-Euler type CFD simulations of the mass distribution in the rotating bowl with mass-spring modelling of the mechanical connections in order to get closer to the vibration signals measured industrially. Such a numerical tool would be a valuable aid in investigating the various potential sources of mass imbalance without the need for experimental replication. Combined with deep learning methods, this type of model would also make it possible to build an unbalance predictor from short vibration signals, opening the door to active control of the decanter

Design and Optimisation of an innovative process for CO2 capture

A 2023 survey found that two-thirds of the young French adults take into account the climate impact of companies’ emissions when looking for a job. But why stop there when you could actually pick a job whose goal is to reduce such impacts? The Laboratory for Process Simulation and System analysis invites you to pursue a PhD aiming at designing and optimizing a process for CO2 capture from industrial waste gas. One of the key novelties of this project consists in using a set of operating conditions for the process that is different from those commonly used by industries. We believe that under such conditions the process requires less energy to operate. Further, another innovation aspect is the possibility of thermal coupling with an industrial facility.

The research will be carried out in collaboration with CEA Saclay and the Laboratory of Chemical Engineering (LGC) in Toulouse. First, a numerical study via simulations will be conducted, using a process simulation software (ProSIM). Afterwards, the student will explore and propose different options to minimize process energy consumption. Simulation results will be validated experimentally at the LGC, where he will be responsible for devising and running experiments to gather data for the absorption and desorption steps.

If you are passionate about Process Engineering and want to pursue a scientifically stimulating PhD, do apply and join our team!

Study of the synthesis and thermodynamic properties of the (An,Zr)O2 and (Zr,An)SiO4 compounds

In the event of a serious nuclear accident, the fuel in the reactor core may melt, resulting in the formation of a compound known as corium. Cases of major accidents and prototypical corium formation experiments have identified the formation of key compounds such as mixed oxides (U,Zr)O2 formed by interaction of the fuel with the zircaloy cladding and silicates (Zr,U)SiO4 formed by interaction of the corium with structural materials. In the case of MOx, (U,Pu)O2 fuels, corium formation could lead to the formation of equivalent phases with significant plutonium contents. However, experimental thermodynamic data on such compounds, which would enable their behaviour to be assessed, are currently non-existent. In this context, determining the conditions for synthesising such compounds with a good degree of purity is essential for acquiring such data. The synthesis of (Zr,Pu)O2 and (Zr,Pu)SiO4 solid solutions is therefore an essential first step before studying (Zr,U,Pu)O2 and (Zr,U,Pu)SiO4 systems.
The aim of this PhD thesis will be to determine the conditions suitable for the synthesis of these compounds, to carry out a series of characterisations enabling their purity to be assessed and their thermodynamic properties to be established. To achieve this, experiments will be carried out on the ATALANTE facility and a multi-technique characterisation approach will be chosen (XRD, Raman and infrared spectroscopies, SEM, synchrotron characterisation techniques, etc.). Solubility tests in a controlled environment will then be set up and calorimetric measurements carried out as part of international collaborations.

Investigation of autocatalysis phenomena occurring in nitric acid dissolution through electrochemical methods

The nuclear fuel recycling process, used at the La Hague plant in France, begins with the nitric dissolution of spent fuel, mainly composed of uranium and plutonium oxides. In a context of plant renewal and widespread of MOX fuel recycling, innovative new dissolution equipment are currently studied. The sizing of such devices is currently limited by the absence of a fully comprehensive model for the dissolution of mixed oxides, which is a highly complex reaction (three-phase involved, self-catalytic, heterogeneous attack, etc.). Despite substantial progress made in previous studies, a number of questions remain unanswered, particularly concerning the reaction mechanisms involved and the nature of the catalyst.
Electrochemical methods (cyclic voltammetry, electrochemical impedance spectroscopy, rotating electrode, etc.) have never been used to understand dissolution, yet they should prove relevant as already demonstrated by the studies carried out on this subject by CEA Saclay in the field of corrosion. Therefore, the aim of this thesis is to apply these experimental methods for the first time to the dissolution of nuclear fuels, through a phenomenological approach. To achieve this, the student will be able to rely on the teams and facilities of Saclay and Marcoule centers, specialized respectively in electrochemical methods for the corrosion studies and the physico-chemical modeling of dissolution.
This cross-disciplinary study, involving materials science, electrochemistry and chemical engineering, will follow a stimulating fundamental research approach, but will also take place in a highly dynamic industrial context. Initially, the work will be carried out on inactive model and noble materials (at the Saclay center), then on real materials containing uranium and/or plutonium (at the Marcoule center).

Top