A theoretical framework for the task-based optimal design of Modular and Reconfigurable Serial Robots for rapid deployment
The innovations that gave rise to industrial robots date back to the sixties and seventies. They have enabled a massive deployment of industrial robots that transformed factory floors, at least in industrial sectors such as car manufacturing and other mass production lines.
However, such robots do not fit the requirements of other interesting applications that appeared and developed in fields such as in laboratory research, space robotics, medical robotics, automation in inspection and maintenance, agricultural robotics, service robotics and, of course, humanoids. A small number of these sectors have seen large-scale deployment and commercialization of robotic systems, with most others advancing slowly and incrementally to that goal.
This begs the following question: is it due to unsuitable hardware (insufficient physical capabilities to generate the required motions and forces); software capabilities (control systems, perception, decision support, learning, etc.); or a lack of new design paradigms capable to meet the needs of these applications (agile and scalable custom-design approaches)?
The unprecedented explosion of data science, machine learning and AI in all areas of science, technology and society may be seen as a compelling solution, and a radical transformation is taking shape (or is anticipated), with the promise of empowering the next generations of robots with AI (both predictive and generative). Therefore, research can tend to pay increasing attention to the software aspects (learning, decision support, coding etc.); perhaps to the detriment of more advanced physical capabilities (hardware) and new concepts (design paradigms). It is however clear that the cognitive aspects of robotics, including learning, control and decision support, are useful if and only if suitable physical embodiments are available to meet the needs of the various tasks that can be robotized, hence requiring adapted design methodologies and hardware.
The aim of this thesis is thus to focus on design paradigms and hardware, and in particular on the optimal design of rapidly-produced serial robots based on given families of standardized « modules » whose layout will be optimized according to the requirements of the tasks that cannot be performed by the industrial robots available on the market. The ambition is to answer the question of whether and how a paradigm shift may be possible for the design of robots, from being fixed-catalogue to rapidly available bespoke type.
The successful candidate will enrol at the « Ecole Doctorale Mathématiques, STIC » of Nantes Université (ED-MASTIC), and he or she will be hosted for three years in the CEA-LIST Interactive Robotics Unit under supervision of Dr Farzam Ranjbaran. Professors Yannick Aoustin (Nantes) and Clément Gosselin (Laval) will provide academic guidance and joint supervision for a successful completion of the thesis.
A follow-up to this thesis is strongly considered in the form of a one-year Post-Doctoral fellowship to which the candidate will be able to apply, upon successful completion of all the requirements of the PhD Degree. This Post-Doctoral fellowship will be hosted at the « Centre de recherche en robotique, vision et intelligence machine (CeRVIM) », Université Laval, Québec, Canada.
Development and validation of surface haptics machine learning algorithms for touch and dexterity assessment in neurodevelopmental disorders
The aim of this PhD thesis is to develop new clinical assessment methods using surface haptics technologies, developed at CEA List, and machine learning algorithms for testing and monitoring tactile-motor integration. In particular, the thesis will investigate and validate the development of a multimodal analytics pipeline that converts surface haptics signals and dexterity exercises inputs (i.e. tactile stimulation events, finger kinematics, contact forces, and millisecond timing) into reliable, interpretable biomarkers of tactile perception and sensorimotor coupling, and then classify normative versus atypical integration patterns with clinical fidelity for assessment.
Expected results: a novel technology and models for the rapid and feasible measurement of tactile-motor deficits in clinical setting, with an initial validation in different neurodevelopmental disorders (i.e. first-episode psychosis, autism spectrum disorder, and dyspraxia). The methods developed and data collected will provide:
(1) an open, versioned feature library for tactile–motor assessment;
(2) classifiers with predefined operating points (sensitivity/specificity);
(3) and an on-device/edge-ready pipeline, i.e. able to run locally on a typical tablet hardware whilst meeting constraints on latency, computing, and data privacy. Success will be measured by reproducibility of features, clinically meaningful effect sizes, and interpretable decision logic that maps back to known neurophysiology rather than artefacts.
Adaptive and explainable Video Anomaly Detection
Video Anomaly Detection (VAD) aims to automatically identify unusual events in video that deviate from normal patterns. Existing methods often rely on One-Class or Weakly Supervised learning: the former uses only normal data for training, while the latter leverages video-level labels. Recent advances in Vision-Language Models (VLMs) and Large Language Models (LLMs) have improved both the performance and explainability of VAD systems. Despite progress on public benchmarks, challenges remain. Most methods are limited to a single domain, leading to performance drops when applied to new datasets with different anomaly definitions. Additionally, they assume all training data is available upfront, which is unrealistic for real-world deployment where models must adapt to new data over time. Few approaches explore multimodal adaptation using natural language rules to define normal and abnormal events, offering a more intuitive and flexible way to update VAD systems without needing new video samples.
This PhD research aims to develop adaptable Video Anomaly Detection methods capable of handling new domains or anomaly types using few video examples and/or textual rules.
The main lines of research will be the following:
• Cross-Domain Adaptation in VAD: improving robustness against domain gaps through Few-Shot adaptation;
• Continual Learning in VAD: continually enriching the model to deal with new types of anomalies;
• Multimodal Few-Shot Learning: facilitating the model adaptation process through rules in natural language.
AI-Driven Network Management with Large Language Models LLMs
The increasing complexity of heterogeneous networks (satellite, 5G, IoT, TSN) requires an evolution in network management. Intent-Based Networking (IBN), while advanced, still faces challenges in unambiguously translating high-level intentions into technical configurations. This work proposes to overcome this limitation by leveraging Large Language Models (LLMs) as a cognitive interface for complete and reliable automation.
This thesis aims to design and develop an IBN-LLM framework to create the cognitive brain of a closed control loop on the top of an SDN architecture. The work will focus on three major challenges: 1) developing a reliable semantic translator from natural language to network configurations; 2) designing a deterministic Verification Engine (via simulations or digital twins) to prevent LLM "hallucinations"; and 3) integrating real-time analysis capabilities (RAG) for Root Cause Analysis (RCA) and the proactive generation of optimization intents.
We anticipate the design of an IBN-LLM architecture integrated with SDN controllers, along with methodologies for the formal verification of configurations. The core contribution will be the creation of an LLM-based model capable of performing RCA and generating optimization intents in real-time. The validation of the approach will be ensured by a functional prototype (PoC), whose experimental evaluation will allow for the precise measurement of performance in terms of accuracy, latency, and resilience.