Modelling a flexible methanol production process adapted to kerosene production

To decarbonize air transport, the use of a growing share of less carbon-rich SAF (Substitute Air Fuels) will be mandatory. One of the most studied processes is MTO (Methanol To Olefins) which consists in producing methanol from carbon capture and water electrolysis, then reacting it to produce olefins.
The simulations of this process carried out previously at LSET considered continuous operation of the installation (ProSim Plus models).

Scientific issue to be addressed
In the perspective of decarbonisation of e-kerosene, the use of ENR electricity seems essential, which implies the study of the process under dynamic regime.

Study techniques
The complete system (CO2 capture, high temperature electrolysis, methanol loop, MTO reaction and purifications) should be simulated in dynamic mode. The software considered is Dymola for the process part. It can then be adapted to be integrated into a larger system with PERSEE
Several modes of system constraints are possible (ENR profile, kerosene demand curve,...).

Expected results
The dynamic model should give:
Size and cost of equipment;
Size and position of optimal storage;
Energy requirements and system efficiency;
Cost of kerosene produced.

Modeling and experimental validation of a catalytic reactor and optimization of the process for the production of e-Biofuels

During the past 20 years, « Biomass-to-liquid » processes have considerably grown. They aim at producing a large range of fuels (gasoline, kerozene, diesel, marine diesel oil) by coupling a biomass gazéification into syngaz unit (CO+CO2+H2 mixture) and a Fischer-Tropsch (FT) synthesis unit. Many demonstration pilots have been operated within Europe. Nevertheless, the low H/C ratio of bio-based syngaz from gasification requires the recycling of a huge quantity of CO2 at the inlet of gaseification process, which implies complex separation and has a negative impact on the overall valorization of biobased carbon. Moreover, the possibility to realize, in the same reactor, the Reverse Water Gas Shift (RWGS) and Fischer-Tropsch (FT) reaction in the same reactor with promoted iron supported catalysts has been proved (Riedel et al. 1999) and validated in the frame of a CEA project (Panzone, 2019).
Therefore, this concept coupled with the production of hydrogen from renewable electricity opens new opportunities to better valorize the carbon content of biomass.
The PhD is based on the coupled RWGS+FT synthesis in the same catalytic reactor. On the one hand a kinetic model will be developed and implemented in a multi-scale reactor model together with hydrodynamic and thermal phenomena. The model will be validated against experimental data and innovative design will be proposed and simulated. On the other hand, the overall PBtL process will be optimized in order to assess the potential of such a process.

Understanding the fundamental properties of PrOx based oxygen electrodes through ab-initio and electrochemical modelling for solid oxide cells application

Solid Oxide Cells (SOCs) are reversible and efficient energy-conversion systems for the production of electricity and green hydrogen. Nowadays, they are considered as one of the key technological solutions for the transition to a renewable energy market. A SOC consists of a dense electrolyte sandwiched between two porous electrodes. To date, the large-scale commercialization of SOCs still requires the improvement of both their performances and lifetime. In this context, the main limitations in terms of efficiency and degradation of SOCs have been attributed to the conventional oxygen electrode in La0.6Sr0.4Co0.2Fe0.8O3. To overcome this issue, it has recently been proposed to replace this material with an alternative electrode based on PrOx. Indeed, this material has a high electro-catalytic activity for the oxygen reduction and good transport properties. The performance of cells incorporating this new electrode is promising and might enable to reach the targets required for large-scale industrialization (i.e. -1.5A/cm2 at 1.3V at 750°C and a degradation rate of 0.5%/kh). However, it has been shown that PrOx undergoes phase transitions depending on the cell operating conditions. The impact of these phase transitions on the electrode properties and on its performance and durability are still unknown. Thus, the purpose of the PhD is to gain an in-depth understanding of the physical properties for the different PrOx phases in order to investigate their role in the electrode reaction mechanisms. The study will contribute to validate whether PrOx based electrodes are good candidates for a new generation of SOCs and help to identify an optimized electrode using a methodology combining ab-initio calculation with electrochemical modelling.

Top